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Exploring phase space localization of chaotic eigenstates via parametric variation
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In a previous papefPhys. Rev. Lett77, 4158 (1996], a new correlation measure was introduced that
sensitively probes phase space localization properties of eigenstates. It is based on a system’s response to
varying an external parameter. The measure correlates level velocities with overlap intensities between the
eigenstates and some localized state of interest. Random matrix theory predicts the absence of such correlations
in chaotic systems whereas in the stadium billiard, a paradigm of chaos, strong correlations were observed.
Here, we develop further the theoretical basis of that work, extend the stadium results to the full phase space,
study thefi dependence, and demonstrate the agreement between this measure and a semiclassical theory based
on homoclinic orbits.
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I. INTRODUCTION have been derived via field theoretic or random matrix meth-
ods for quantities involving level slopéoosely termed ve-
The two general motivations for our investigation are un-locities in this paper level curvatures, and eigenfunction
derstanding better the nature of eigenstates of bounded quaamplitudeq9,10]. In contrast, our motivation is not the uni-
tum systems possessing “simple” classical analogs, and exversal features per se for they cannot tell us anything specific
ploring new features of such systems’ behavior as a systembout the system other than it is, in fact, chaotic and/or sym-
parameter is smoothly varied. Simple in this context refers tanetry is present. Rather we are interested in what system
few degrees of freedom and a compact Hamiltonian. Neverspecific information can be extracted in the case that the
theless, the classical dynamics may display a rich variety ofystem’s response deviates from universal statistical laws.
features from regular to strongly chaotic motion. We focusThe specific application discussed in this paper shows how
on the strongly chaotic limit for which semiclassical quanti-one can decipher phase space localization features of the
zation of individual chaotic eigenstates does not hold, angigenstates. The theory naturally divides into a two-step pro-
the correspondence principle is less well understpbld  cess. One must first understand any implied limiting univer-
Even though there has been some recent prog2gssturns  sal response of chaotic systems. Next, one must develop a
out that with a detailed understanding of chaotic systems geory which gives a correct interpretation of any deviations
statistical theory provides a well-developed, alternative apseen from the universal response. The necessarily close in-
proach to these difficulties. Twenty years ago, B¢&lcon-  terplay between theory and observation required to deduce
jectured and Voro$4] discussed that in this case &s-+0 new information forms part of the attractiveness of investi-
the eigenstates should respect the ergodic hypothesis gating parametric response.
phase spacé] E—H(p,q)], as it applies to wave functions. Taking up the first step of understanding universal re-
In essence, the eigenmodes should appear as Gaussian rgpense, an expected but rarely discussed property is the in-
dom wavefunctions locally in configuration space with theirdependence of eigenvalue and eigenfunction fluctuation
wave vector constrained by the ergodic measure of the emmeasure$11] which is found in the random matrix theories
ergy surface. Discussion of the properties of random waveanticipated to describe the statistical properties of quantum
and recent supporting numerical evidence can be found igystems with chaotic classical analdd®,13. Coupled with
Refs.[5,6]. Berry’s conjecture mentioned above, these properties imply
The second general motivation relates to a long recoga “democratic” response to parametric variation for an er-
nized class of problems, i.e., a system’s response to paramejedically behaving quantum system. The perturbation con-
ric variation. Our interest here is restricted to external, connects one state to all other states locally with equal probabil-
trollable parameters such as electromagnetic fieldsity. The variation of any one eigenstate or eigenvalue over a
temperatures, applied stresses, changing boundary condarge enough parameter range will be statistically equivalent
tions, etc., through whose variation one can extract new into their respective neighboring states or levels.
formation about a system not available by other means. A In a pioneering work on the ergodic hypothesis using the
multitude of examples can be found in the literat{ir¢ A  stadium billiard, now a paradigm of chaos studies, Mc-
recent concern has been universalities in the response of ch@enald noticed larger than average intensities of the eigen-
otic or disordered systems and statistical approaches to mestates in certain regiorid44]. In his thesis he states that “a
suring the responsg8]. Universal parametric correlations small class of modegouncing ball, whispering gallery, efc.
seem to correspond naively to a definite set of ‘special’ ray
orbits.” Heller initiated a theory concerning these large in-
*Permanent address: Physical Research Laboratory, Navrangputensities when he modified the random wavefunction picture

Ahmedabad 380 009, India. with his prediction and numerical observations of eigenstate
"Present address: Defense Research Establishment Ottawa, Ggarring[15]. He derived a criterion for eigenstate intensity
tawa, Ontario, Canada K1A 0Z4. in excess of the ergodic predictions along the shorter, less
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unstable periodic orbits. Scarring is thus one possible phasenmediately following this one, we give the theory for quan-
space “localization” property of a chaotic eigenstate. Othertized maps(discretized timg [23]. The next section intro-
possibilities result from time scales not related directly to theduces strength functions and a new class of correlation coef-
Lyapunov instability such as transport barriers in the form officients. Section Il utilizes ergodicity and random wave
broken separatricegl6], and cantori[17,18, or diffusive  Properties to motivate the introduction of random matrix en-
motion[19]. In the context of this paper, we take localization sembles. The ensembles describe the statistical properties of
to mean some deviation from the ergodic expectation beyon@haotic systems in the—0 limit. The correlation measures
the inherent quantum fluctuations, and it creates the possibi@nish for these ensembles indicating the absence of local-
ity of a nondemocratic response to parametric variation. Aization and universal response to perturbatios, parameter
perturbation could preferentially connect certain states oyariation. Section IV gives the semiclassical theories of
classes of states, thus leading to additional short-rangiVe!l velocities, strength functions, and overlap intensity-
avoided crossings or like level movements within a particu-'evel velocity correlation coefficients. We finish with a full

lar class. etc. treatment of the stadium billiard and concluding remarks.
Debate ensued Heller's work on eigenstate scarring, in
part, because of the difficulty in quantitatively characterizing Il. PRELIMINARIES

and predicting its extent in either a particular eigenstate or .
even collective groups of eigenstates. Judging from the ear- Consider a quantum systemA governed by a smoothly
lier literature, it was easier to graph eigenstates in order tarameter-dependent Hamiltonid(\) with classical ana-

see the scarring by eye than define precisely what it means 69 H(p.d;\). We suppose that the dynamics are chaotic for
what its physical significance is. Furthermore, he linearizecfll values of thex range of interest, and suppose the absence
the semiclassical theory which was insufficient for a full de-of symmetry breaking. Then the expectation is that all statis-
scription of scarring. We remark that recent work suggestéical properties are stationary with respecttowithout loss

the opposite, i.e., the linearized theory is sufficient assumingf generality, we also assume the phase space volume of the
# is smaller than some system specific value which is “smallenergy surface is constant as a functionnofThis ensures
enough” [20]. However, many of the experimental and nu- that the eigenvalues do not collectively drift in some direc-
merical investigations are far from this regime and the nontion in energy, but rather wander locally. We use the same
linear dynamical contributions are essential for understandstrength function Heller employed in his prediction of scar-
ing most of the work being done. The theory incorporating'ing [15] except slightly generalized to include parametric
nonlinear dynamical contribution§2,21] was developed behavior

much later than Heller's introduction of scarring. It is based 1 = A

on heteroclinic orbit expansions for wave packet propagation S,(E,\)= _f dteFV( e HOVA )

and strength functions. Ahead, we make extensive use of 27h ) o

these forms to derive a semiclassical theory applicable to

problems involving parametric variation. =Tr{p.S[E-H(\)]}
In a previous papef22], one of us(S.T) introduced a
measure that very sensitively probes phase space localization = Pan(M)E—E(M)T;
n

for systems having continuously tunable parameters in their
Hamiltonians. It correlates level motions under perturbation _ 2
with overlap intensities between eigenstates and optimally Pan(M)=(alEq(V))I%, (1)
localized wave packet states. The basic idea is that the wave - i )
packet overlap intensities select eigenstates that potential{/nerep,=|a){al. S,(E,)) is the Fourier transform of the
have excess support in the neighborhood of the phase poiﬁytocorrelaﬂon function of a special initial state) of inter-
at the wave packet’s position and momentum centroids. Thest. AheadS,(E,\) will denote the smooth part resulting
perturbation will push these levels somewhat in the sam&om the Fourier transform of just the extremely rapid initial
direction depending on how it is distorting the energy surfacelecay due to the shortest time scale of the dynarzeso-
near that particular phase point. If the level velocities assolength trajectories We will take|a) to be a Gaussian wave
ciated with those states have similar enough values, thepacket because of its ability to probe “quantum phase
significant nonzero correlations will result that reveal the lo-space,” but other choices are possible. Say momentum space
calization. The measure can be used in a forward or reverdecalization were the main interest, the natural choice would
direction. If phase space localization is present in a system dfe a momentum eigenstatgr) can be associated with a
interest, then it predicts experimentally verifiable manifestaphase space image,(p,q) of Gaussian functional form us-
tions of that localization. Conversely, one can first experi-ing Wigner transforms or related techniques(p,q) turns
mentally determine the level-velocity—overlap-intensity out to be positive definite and maximally localized in phase
measure in that system for the purpose of inferring the exisspace, i.e., it occupies a volume fof.
tence and extent of localization. For a fixed value of the parameter, an example strength
Our purpose in this paper is to give a complete account ofunction is shown in Fig. 1. If the wave packet is centered
that paper, develop further the semiclassical theory, and exssomewhere on a short periodic orbit, large amplitudes nec-
plore the full phase space arfd behavior of the stadium essarily indicate significant wave intensity all along the orbit
billiard, a continuous time system. In a companion papems seen in the inset eigenstates. This behavior canpoori
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just the level curvedi.e., density of statg@sthe eigenstate
properties can be more directly probed. A new class of sta-
tistical measures can be defined that cross correlate intensi-

ties with levels. The most evident examples are the four cor-
relation coefficients involving both level curves and
eigenstate amplitudes that can be defined from the following

quantities:(i) the level velocitiesIE,(\)/d\, (ii) level cur-
vatures °E,(\)/d\?, (i) overlapsp,,, and (iv) overlap
changes dp,,/dN. The most important is the overlap
intensity-level velocity correlation coefficie@t,(\) which is

‘“ ‘ defined as
|I||.| . |.| | |||| I| I .I‘ I‘ ‘ | | Jul ﬁEnO\)
panT .

Energy ClN)= ————, 2

0,0E

Intensity

FIG. 1. Strength function for the stadium billiard. The Gaussian ’ ’ )
wave packet is centered in the stadium with momentum directedvhereo, andog are the local variances of the overlaps and
towards the end cap. The large intensities are where the scarrilgvel velocities, respectively. The brackets denote a local en-
occurs. ergy average in the neighborhood Bf It weights most the

level velocities whose associated eigenstates possibly share

be stated to be obviously in violation of the quantum statiscommon localization characteristics and measures the ten-
tical fluctuation laws even if it appears so. That remains to be&lency of these levels to move in a common direction. In this
determined. With the inclusion of parametric variation, theexpression, the phase space volume remains constant so that
eigenvalues of a chaotic system are supposed to move aloitige level velocities are zero centeréatherwise the mean
smoothly varying curves of the type shown in the uppermust be subtracte¢dandC,(\) is rescaled to a unitless quan-
square of Fig. 2. Many of the previous studies of parametridity with unit variance making it a true correlation coeffi-
variation focussed on the properties of such level curves. &ient. The set of states included in the local energy averaging
great deal is known about the distribution of level velocitiescan be left flexible except for a few constraints. Only ener-
[24,29, the decay of correlations in parametric statisticsgies wheres,(E,\) is roughly constant can be used or some
[10,26], the distribution of level curvaturd@7-29, and the  intensity unfolding must be applied. The energy range must
statistics of the occurrences of avoided crossigs31). be small so that the classical dynamics are essentially the

We now superpose the strength function overlap intensitgame throughout the range, but it must also be broad enough
information on Fig. 2 in the lower square as vertical linesto include several eigenstates.
centered on the levels; the lengths are scaled by the intensi- ¢_(\) thus has a simple form and the additional advan-
ties (3D versions of this figure turned out not to be very tage of involving quantities of direct physical interest. Level
helpful). By considering the full strength function and not velocities (curvatures alsparise in thermodynamic proper-
ties of mesoscopic systerfd32], and overlap intensities often
arise in the manner used to couple into the sydtg8h It is
the most sensitive measure of the four possible combina-
tions, the others being the intensity curvature, intensity
change curvature, and intensity change level velocity corre-
lation coefficients. The first two are far less sensitive mea-
sures of eigenstate localization effects, even though curva-
ture distributions are affected by localization because of the
relative rareness of being near avoided crossings where cur-
vatures are large. The last shows no effect since intensities
will change whether the level is moving up or down. These
three measures will not be considered further in this paper,
but we did calculate them to verify their lack of sensitivity.

Energy

Energy

IIl. ERGODICITY, RANDOM WAVES,

FIG. 2. lllustration of ergodic behavior. The upper square shows AND RANDOM MATRIX THEORY

how the energy eigenvalues move as a functior\ ofThe lower . . . .

square is a graphical representation®){E,\). Each small line Semiclassical expressions for wave functions have the
segment is centered on an eigenvalue and its lambda value. THEM

heights are proportional to the overlap intensity with a wavepacket.

The level velocities and overlap intensities were produced using a W (X)= 2 AL(X)exdiS,(X)/% —iv,ml2] (3)
Gaussian orthogonal ensemble. n
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H(N)=Hg+AHq, (4)

where H, and H; are independently chosen GE matrices.
Note that the sum of two GE matrices is also a GE matrix
which thus satisfies our desire to consider stationary statisti-
cal properties aa varies.

It is unnecessary to specify the abstract vector space of

{A(\)} (only the dimensionality of the spaci the defini-

tion of the ensemble. Howevefq) has to be overlapped
with the eigenstates, and thus a localized wave packet seem-
ingly must be specified. In fact, the specific choice is com-
pletely irrelevant because the GEs are invariant under the set
of transformations that diagonalize thejm) can be taken as
any fixed vector in the space by invariance. The overlaps and
level velocities turn out to be independent over the ensemble

since diagonalizingH,} leaves{H,} invariant and the level

velocities are equal to the diagonal matrix element$igf
With the overbar denoting ensemble averaging

FIG. 3. Realization of random wavefunctions in two degrees of < Pun (9E”> <pan>E< (9E”>
freedom. A superposition of 30 plane waves with random direction _— 2 E 2N E
and phase shift, but fixed magnitude of the wave vector is shown. Co(N)= o 0E = 0,08 =0. 5
o a

where S,(x) is a classical actiony, is a phase index, and |n fact, it is essential to keep in mind theerychoice of| «)
A, (x) is a slowly varying function given by the square root gives zero correlations within the random matrix framework.
of a classical probability. The classical trajectory underlyingThe existence of even a sindle) in a particular system that
each term arrives at the point with momentum,p, leads to nonzero correlations violates ergodicity.
=VS,(x). For a chaotic system, a complete theory leading It is straightforward to go further and consider the mean
to an equation of the form of Ed3) does not exis{1].  square fluctuations af,(\),
Nevertheless, Berr§3] conjectured that for the purposes of
understanding the statistical properties of chaotic eigenfunc- < IE; > )2

E

tions, the ergodic hypothesis implies that the true eigenfunc- Pai o\

tion will appear statistically equivalent to a large sum of C 2=

these terms each arriving with a random phé&sace each @ (0, 0)>

wave contribution extends over a complicated, chaotic)path

For systems whose Hamiltonian is a sum of kinetic and po- 1 NN JE;  JE;

tential engrgies, the energy surface constraifitE = (No,o0)2 4 2 Pai ﬁpa]’ N
—H(p,q)] fixes only the magnitude of the wave vector. The

eigenfunctions therefore appear locally as a sum of randomly 1 N m

N
phased plane waves pointing in arbitrary directions with :W i 2 PaiPaj N N

fixed wave vectok. The central limit theorem asserts such

waves are Gaussian random. An example is shown in Fig. 3 1 N _TEMZ 1
for a two-degree-of-freedom system where the spatial corre- = > pi.( ' ) =_, (6)
lations fall off as a Bessel functiady(kr). (Nop0e)” 5 I\ N

If the eigenstates truly possessed these characteristics,
then a perturbation of the Hamiltonian would have matrixwhereN is the effective number of states used in the energy
elements that behaved as Gaussian random variables whoaeeraging. Again the level velocities are independent of the

variance depended only on the energy separation of the tweigenvector components. THE;(\)/d\=(j|F4|j) and thus
eigenstates, i.e., an energy-ordered, banded random matrire i+ j terms vanish due to the independence of the diago-
The energy ordering separates the weakly interacting stategal elements of the perturbation leaving only the diagonal
and therefore only the local structure is of importance hereterms that involve the quantities that respectively enter the
The range of the averaging carried out in the correlation/ariance of the eigenvector components and the mean square
function is taken to be much less than the bandwidth of sucheve| velocity. The final result reflects the equivalence of

a random matrix. The ultimate statistical eXpI’eSSion of thi%nsemb|e and Spectra| averaging in the |a@h}:n|t There-
structure is embodied in one of the standard Gaussian efore, in ergodically behaving systent,(\)=0=* N~2for

sembles(GE). We construct a parametrically varying en- every choice ofa). Figure 2 was made using the orthogonal
semble{H(\)} as GE. It illustrates a manifestation of ergodicity, i.e., universal
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response of the quantum levels with respeck tand demo-  cally chaotic systems with the topology of a ring threaded by

cratic behavior of the overlap intensities. guantum flux. In order to make the discussion self contained
we will summarize their basic ideas using their notation and
IV. SEMICLASSICAL DYNAMICS then extend their results to include level velocities for any

) ) _classically chaotic system. More recently, Leboeuf and

We develop a theory based upon semiclassical dynamicsjeber[36] studied the non-universal scaling of the level

which explains how nonzero overlap correlation coefficientsyejocities using a similar semiclassical theory. The
arise out of the localization properties of the system. The;_dependence of the average and root mean square level

theory simply reflects the quantum manifestations of finiteyelocities for an arbitrary parameter change is derived and is
time correlations in the classical dynamics. In a chaotic sysconsistent with the previous works.

tem, the classical propagation pf,(p,q) will relax to an The smoothed spectral staircase is

ergodic long time average. However, wave packet revivals in

the corresponding quantum system earlier than this relax- N.(E )\):2 0JE—E,(\)] @
ation time can occuf34]. In Heller's original treatment of o noc "

scars[15], he uses arguments based upon these recurrences _ o _
which occur at finite times to infer localization in the eigen- and taking the derivative with respect to the parameter, we

states. obtain

In the correlation function, the intensitigs,,, weight IN(EN) JE. (V)
most heavily the level motions of the group of eigenstates — =Y S[E-E (N ]——. (8)
localized nearp,(p,q), if indeed such eigenstates exist. If I\ n I\

we construct the Ham|lton|§1n as in E Wher?HO s the The quantitye is an energy smoothing term which will be
unperturbed part, then by first-order perturbatlonAtheory, th‘%aken smaller than the mean level spacing. Our calculations
level velocities are the diagonal matrix elementsHafjust || yse Lorentzian smoothing where
as in random matrix theory. We showed in the previous sec-

tion that in random matrix theory these elements weighted €

with the intensities are zero centered. For a general quantum 0e(X)= m(X°+€?)”
system the equivalent expectation would be fluctuations

about the corresponding classical average of the perturbatioFhe energy averaging of E() yields

over the microcanonical energy surfaéegE—H(p,q)]. In <(9NE(E,7\)> B <(7En(>\)>
E

C)

this caseC,(\)~0 for all |a). On the other hand, the quan- =d(E\)
tum system will fluctuate differently if there is localization in I\ ’ I\
the eigenstates. Note that this means some choicea )of
will still lead to zero correlations. It only takes one statisti- Thus, in order to obtain information about the level veloci-
cally significant nonzero result to demonstrate localizatiorties, we will evaluate the spectral staircase.
conclusively, but to obtain a complete picture, it is necessary The semiclassical construction of the spectral staircase is
to consider manya) covering the full energy surface. broken into an average part and an oscillating part

We begin by examining the individual components of the S.(E)
overlap correlation coefficient, the level velocities and inten- N _(E \)=N(E,\)+ >, Bp(E,)\)exp[i ik }
sities. Theirs dependences are derived and also they are p h

(10

shown to be consistent with random matrix theoryhasO. CeTAE
Finally, the weighted level velocities are discussed. We give % D{M] _ (11)
an estimate based upon a semiclassical theory involving ho- fi

moclinic orbits for the slope of the large intensities. _
The average staircad$(E,\) is the Weyl term and to lead-

A. Level velocities ing order in# is given by

In random matrix theory(RMT) level velocities are — 1
Gaussian distributed as would also be expected of a highly N(E,\)= WJJ J 6[E—H(p,q;N\)]dpdg. (12
chaotic system in the small limit. Thus, the mean and
variance oé give a complete statistical description in the This simply states that each energy level occupies a volume
limiting case and are the most important quantities more gerk® in phase space. A change in the phase space volume will
erally. Since the purpose of this section is to derive theiproduce level velocities due to the rescaling. We wish to
scaling properties, it is better to work with dimensionlessstudy level velocities created by a change in the dynamics,
qguantities. Thus, the dimensionless variance is defined awot the rescaling. Hence, without loss of generality we will
}ézﬁ(E,)\)gé whereE(E,)\) is the mean level density re_quire the phase space volume to remain unchanged, so
which is the reciprocal of the mean level spacing. IN(E,N)/oN=0. The oscillating part of the spectral stair-

We begin by following arguments originally employed by case is a sum over periodic orbits. In general, a perturbation
Berry and Keating 35] in which they investigated the level will alter the value of the classical actionS,, the periods
velocities normalized by the mean level spacing for classiT, and the amplitudes
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__ eXdlive) <(a—N€(E)\))2> <ZZ
S o JdetM, D) 13 2 m

whereM, is the stability matrix and, is the Maslov phase XSJE—E,(N)]SJE—En(N)]
index. The summation is most sensitive to the changing ac- E
tions and periods because of the associated rapidly oscillat- (17)

ing phases, i.e., the division by in the exponential. Since

the energy smoothing term is taken smaller than a mean For a nondegenerate spectrum, the summation is nonzero
level spacing, it scales at least by and the derivatives of only if n=m because of the product of the two delta func-
the period vanish a&— 0. Thus, only the derivatives of the tions. Since Lorentzian smoothing is applied, then

actions are considered, and the oscillating part of the stair-

8 1
case yields 52X)~ 5—8en(X) (18)
INosd E,N) _
TN for e<d™1. Thus we have
E
- N 2 d [[oE, \?
i 9S,(E\) Sy(E.\) <(‘9 ‘ ) > _ <( ) >
= _ =P i| =P ()\) . (29
(3o e 25 A=) |z ),
—€T,(EN) The final result will be independent af and the type of
Xexp————(] - (14 smoothing, i.e., Lorentzian or Gaussian. Using Xhderiva-
E tive of Eq.(11), the dimensionless level velocities are
It has been showh37] that the change in the action for a 2= 2med Sy 9y | Sp— Sy
periodic orbit is Pl on o P T
S, (TedH(P,g;N) —€
K——fo Tdt (15 ><exp{7[Tp+Tp,]]>E. (20

The above integral is over the path of the unperturbed orbit The diagonal and off-diagonal contributions are sepa-
and the Hamiltonian can have the form of E4) whereH,  rated, so

is the unperturbed part. Equatiéiv) can be solved without ~y o~y ~s
the explicit knowledge of the periodic orbits in the—0 OE= O diag™ T off
limit. The quantitydS,/JX\ is replaced by its average. By the

pr|n_C|pIe of uniformity[38], the COIIQC“O” Of every _pe_rlod!c averages out to be zero unlegs=S,,, . We will assume that
orbit covers all of phase space with a uniform distribution.
‘this occurs rarely except wherp=p’. The product

Thus, the time integral can be replaced by an integral ove(&S 14N)(9S, 14\ can take on both positive and negative
phase space upon taking the average values Th|s also helps to reduce the contributions of the

(21)

As i—0, the phase of the exponential oscillates rapidly and

4S, JH(p,q:\) off-diagonal terms. For a more complete discussion of the
lim < > = S[E—H(p,q;\)]dpdq, diagonal vs off-diagonal terms see RE39]. We will only
T—>ocT I\ v I\ present the results for the diagonal terms, since the correla-

(16) tions between the actions of different orbits is not known but
should not alter the leadinty dependence.
whereV is the phase space volume of the energy surface. The diagonal contribution is
The above treatment of the average is only valid for the long
orbits, but we may ignore the finite set of short orbits in the  ~2 2776d9 2 B |2( Sp) p{_ZETp]
sum for small enougth. dH(p,q;\)/I\ is the perturbation E,diag™ P f E'
of the system that distorts the energy surface. Since the phase (22)
space is assumed to remain constant, then the average change
in the actions of the periodic orbits is zero in the limit of The factorg depends on the symmetries of the system. For
summing over all the orbits. If only a finite number of orbits systems with time-reversal invariangg=2 and without
are considered, corresponding to a firfitethen there might time-reversal symmetrg= 1. The precise values @fS,/J\
be some residual effect of the oscillating part which will are specific to each periodic orbit rendering the sum difficult
cause a deviation from RMT. to evaluate precisely. A statistical approach is possible
Continuing to follow Berry and Keating, the mean squarethough which generates a relationship between the sum and

of the counting function derivatives can be expressed ircertain correlation decays. Hence, the quamz'ﬁsp(/a)\)2 in
terms of the level velocities Eq. (22) is replaced by its average
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9o\ °\ _ T[T/ 2HIP(V),G():N] JHIP(t),q(t AT\
<(5) >p_fo J0< N O\ >pdt dt
T[T/ oHIp(),a(t);N] JH[p(t +1),q(t" +t) N\
_2.[0 ft < O\ )Y >pdt dt. (23

Long orbits increasingly explore the available phase spacehere the perturbation is a moving boundary. In this case
on an ever finer scale. As the time between two points in & (E) depends upon the autocorrelation function and the
chaotic system goes to infinity, then they become uncorrefluctuations of the number of bounces. Here, as well as in
lated from each other. This is a consequence of the mixingnaps[42], K(E) is an action velocity diffusion coefficient.
property 19S,/d\} being Gaussian distributed is linked to the level
velocities being Gaussian distributed as in RMT. If the
(FO)f(1))p—0. 24) {9S,/9\} are not Gaussian distributed by the Heisenberg
This property is independent of the placement of the tWOtime,_ then one should not expect the Ie_vel velocities to be
points, i.e., the two points can lie on the same orbit as long agonsistent with RMT; again see the stadium results ahead.
the time between the points increases to infinity. Thus, by the
central limit theorem4S,/o\ will be Gaussian distributed B. Overlap intensities
for the sufficiently long periodic orbits. The time dependence  Now we investigate the overlap intensities and derive a
of Eq. (23) is approximated by a method discussed by Bohi-gemiclassical expression for thiescaling of the root mean

gaset al. [40]. They define square. Eckhardit al.[43] developed a semiclassical theory
= | gH[p(0),q(0);N] dH[p(t),q(t);\] basg—:-c_i on periodic orbits to obtain the matrix gler_nents of a
K(E)=J N N dt sufficiently smooth operator. However, the projection opera-
p tor of interest heréa){ «| is not smooth on the scale bffor

(29 Gaussian wave packets. Thus, their stationary phase approxi-
mations do not apply, in principle, to the oscillating part of
bation. The variance of the actions in the limit of long peri-the strt_angth functl_on. In Berrys_, work on scaret], he use.d
Gaussian smoothing of the Wigner transform of the eigen-
ods becomes ) X . .
states to obtain a semiclassical expression for the strength of
S, 2 the scars. His approach led to a sum over periodic orbits. We
o | T2KET (260 will use the energy Green’s function similar to Tomsovic and
p Heller in Ref.[21] where they derived the autocorrelation
function using the time Green’s function and gave results for
the strength functions as well. This technique results in a
connection between the overlap intensities and the return dy-

which can be evaluated in terms of properties of the pertur

Applying the Hannay and Ozorio de Almeida sum r[88],
the following substitution is made:

2 ) 1 (=dT namics, namely the homoclinic orbits.
> Byl T3 PR (27) For completeness, we present the smooth part of the
strength function which is easily obtained from the zero-
Hence, the diagonal contribution is length trajectories
- — 1
~ edg (=1 —2€T - _
o= 2 _[ZK(E)T]QXP{ ] ot S.(EN = | AP)SE-H(p)dadp. (29
’ ah2Jo T h
_ A(q,p) is the Wigner transform of the Gaussian wave packet
_ gK(E)d op-(@+1) (2 andis given by
i A(a,p) =2%xp{— (P~ p,)*0?/i%= (4—0,) 0%} 0

The variance of the level velocities on the scale of a mean

spacing g_rowsﬁ"l. faster than the density of states as thetpe ahove results were previously used by Hel] in the
semiclassical limit £—0) is approached; see numerical gerivation the envelope of the strength function and does not
tests performed on the stadium in the next section. contain any information about the dynamics of the system.

The exact level velocities are perturbation dependent and The oscillating part of the strength function, on the other
cannot be determined without specific knowledge of the syspang, includes dynamical information,

tem{[i.e., the evaluation oK(E)]. K(E) is a classical quan- .
tity that contains dynamical information about the periodic _ = . , ,
orbits. It should scale as the reciprocal of the Lyapunov ex- Sa,0sd BN = T Im | (ala)G(a.q"E){(q’|)dadq’,
ponent[41]. Leboeuf and Sieber derivad(E) for billiards (3D
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where
2 d ,
<Sa,os(,(Ea)\)>E= 27760-0" (35

G(a,0 E)= —————
4.9 ih(2mih)d- D72 Since the square of the strength function is a product of two

delta functions, an energy smoothing term is required. After
x> |DS|1/2ei[Sj(q,q’;E)/hfVJ-'*n'/2] (32) making the diagonal approximation, we obtain
]

Ui,diag
is the semiclassical energy Green’s function. The above sum
is over all paths that connect to g' on a given energy —
surfaceE. The action is quadratically expanded about each d
reference trajectory; see Appendix A for details. The initial
and final points §; andq;) of the reference trajectories are
obtained by considering the evolution of the wave packetA
Nearby points will behave similarly for short times. Thus
the phase space can be partitioned into connecting areas.
the time is increased the number of partitions grow and the

_2meg mza_z‘ detA?!
B ] wh? ‘ detA

|fl(qf !qi)lz eiZETj /ﬁ>
|Pal? e
(36)

classical sum rule is applied to the above sum for special

' cases including two-dimensional systems; see Appendix B
the details. Thus,

size of their area shrinks. The reference trajectories are the 2egmPo? gmla?
paths that connect the partitions. The autocorrelation func- Ui,diag% ﬁf exp—2€T/h}dT~ P Tt
tion in Ref.[21] has the same form as Appendix A where the h%dlp,| fidlp,|

paths that contribute to the saddle points are the orbits ho- (37

moclinic to the centroid of the Gaussian wave packet so thaéetting oo Y2 which shrinks the momentum and position

g; andgs lie on the intersections of the stable and unstableunCertaintieS similarly, thei scaling of o2 is 79 see
manifolds. The result from Appendix A is ’ o, diag ’

numerical tests of the stadium in the next section.

detAzt) 12 1 12 Assuming that the amplitudes of the wavefunctions are
-7 Z Gaussian random, then the RMT result for strength functions
Se0sd E)= —5-Re —— _ 2n the RMT re : !
w2 T\ detA [q™] |’ V] is a Porter-Thomas distribution which has a variance that is
S (0 ) €iSIH a1 B 33 proportional to the square of its average. The average
ilds .4 T

strength function, Eq(29), scales aSc(/ﬁ)d for Hamiltoni-
ans which can be locally expanded as a quadratic. Therefore,
where with o=# 12 the variance of the strength function, E§7),
scales as the square of the average and is consistent with

1 i (Gt —0g)? RMT.
f;(qf,qo:exr{zb-A bb— Py (=)~

20°
. C. Weighted level velocities
= % . . .
_ G _ 77}_ (34) A semiclassical treatment of the overlap correlation coef-
20° 2 ficient defined in Eq(2) is now developed. As stated in the

introduction, the companion pap&23] presents the semi-
The functionf;(qs,q;) in the above equation is a damping classical theory for maps. We stress that in the preceding
term which depends on the end points of the homoclinicsubsections and in what follows is for conservative Hamil-
orbits. Only orbits which approach the center of the Gaussiatonian systems. Here, tiiedependence of the average over-
wave packet in phase space will contribute to the sum. Théap correlation coefficient is established and a semiclassical
time derivatives of the parallel coordinates are evaluated aargument for the existence of nonzero correlations is pre-
the saddle points which are near the centroid of the Gaussiaagnted.

so we may setg™|~|q’™|~|p,|/m. The sum over homo-
clinic orbits used for the autocorrelation function in ReX1]
converged well to the discrete quantum strength function To calculate the overlap correlation coefficient, the rate of
when only those orbits whose period did not exceed thehange of the actions for homoclinic orbits will be necessary.
Heisenberg timQTszTrﬁE(E,)\)] were included. As hap- As discussed earlier, this was accomplished for periodic or-
pened with the periodic orbits and the level velocities, inbits [37]. We extend these results to include the actions of
order to evaluate Eq(33) the homoclinic orbits and their homoclinic orbits. Homoclinic orbits have infinite periods
stabilities must be computed rendering the sum tedious t6ausing their actions to become infinite. We are interested in
evaluate precisely as done in RE21]. the limiting difference of the actios{P between thejth

By taking a statistical approach we can gain some insighbomoclinic orbit and repetitions of its corresponding periodic
into the workings of this summation. The variance of theorbit p. The difference is finite and is equal to the area
intensities are obtained by a similar fashion as the level vebounded by the stable and unstable manifolds with intersec-
locities. Using Eqs(1) and(18), we have tion at the jth homoclinic point in a Poincarenap. Sl(p)

1. Actions of homoclinic orbits
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provides information about the additional phase gathered by 1 —AMN
the homoclinic orbit. The action of thigh homoclinic orbit lim ?<A31(p)>j: TJ S[E—H(p,q;0)]
asn— in the time interval ¢ nT,,nT,) is T
() (P) IH(p, ;N
Sy —2nS+ 837, (38) X%dpdq. (44)

whereT, and S; are the period and action of the periodic _. .
orbit, respectively. As a consequence of the Birkhoff-MoserS_'nce the density of states are kept constant,_the perturba-
theorem[46], if the Poincaremap is invertible and analytic, tions fluctuate about zero and t_he mtggral vanishes. Hence,
then there exist infinite families of periodic orbits that accu-tN€ @verage change in the actions will be zero. The mean
mulate on a homoclinic orbit. It is thus possible to estimateSduare fluctuations of the actions
the action of the homaoclinic orbit by these periodic orbits AS(P)2y.

. . . <( ] )>J
whose action is given bj47]

™ ([ dH(p,g;N) dH(p",q";N) )
aP)=ns,+SP—sP), (39 =(A)\)2f0 f0< Y By jdtdt

wheres(?) is the difference in action between a path defined (45)

by SJ(") élong the stable and unstable manifolds and the path h G ian distribution by th | limit th
of the new periodic orbit in a Poinc'amap.sgf’j) depends approaches a Gaussian distribution by the central limit theo-

exponentially om, o asn— o approaches the action rem via the same reasoning as that for periodic orbits. Again
ST v Fenj PP _ we can defin&,,{E) as in Eq.(25), except now the aver-
of the homoclinic orbit. Thus, in the limit of large S}p) is o E) a-(29 b

, . N . age is over homoclinic orbits and instead of integrating to
approximated by the difference between two periodic orbit§finity we only integrate to the Heisenberg time to be con-

i (P~ (P) _ 5 (P) . . . .
(e, SjP’~a)—nS,). Hence, the change ifij” due to a  gjstent with the range of the sum in EG3). It is the short

small perturbation is calculated as in RES7], time dynamics that dominate. Long time correlations will
JH(P,qN) JH(P,q:N) average to zero by the mixing propeftgq. (24)]. Thus, the
ASJ(F)): _A)\f (p)#dt-}- nA)\f 2 dt variance of the actions becomes
anj Sp aSJ(p) 2
+0()\?), (40) <( N ) >j~2Khon(E)T- (46)

\%Tere_ the mtegr?llj? are over the unperturbed periodic orbltsKhom(E) will approachK (E) in the semiclassical limit 4,
e differencessy], can be made smaller than the second_,w)_

order term in Eq(40) by takingn large enough. Interchang-

ing the order of integration and differentiation, the integrals 2. Overlap intensity-level velocity correlation coefficient
reduce to the unperturbed energy times the derivative of the

. : . In the previous two subsections, we have examined the
orbit period with respect to the parameter P

pieces that constitute the overlap correlation coefficient. The

9 semiclassical theories of the level velocities and the intensi-
ASPI~— ANEp A Ta—NTp). (41)  ties are now combined to construct a semiclassical theory for
! the weighted level velocities. The numerator of the overlap
correlation coefficient is proportional to the energy averaged
product of the intensities and level velocities

IN(E,\ JEm
<sa<E,x>—f% )> =<E 2 Pan(M
E n m

The orbit periodT can be expressed atS/JE. Thus, the
difference of the two periods as— is
(p) (p)

Ta® = NTp=— N~ (42

Hence, X 0(E—Ep) 5E(E—Em)>
- J (P JH(p,q;\) ]
ASJ AN &A(Ep 7E ) A)\L}p) N dt. _i ) ()\)5_En
(43) 2me\ N IN N

Note that the integral is over the unperturbed path along the ~
stable and unstable manifolds. For zero correlatidns{” =52 CalN). (47)
must be “randomly” distributed about zero.

If enough time is allowed, then for ergodic systems the set-orentzian smoothing was again employed, Bd), and we
of all homoclinic orbits for a given energy will come arbi- have defined’,(\) to be the numerator of the overlap cor-
trarily close to any point in phase space on that energy surelation coefficient(without the division of the rms level
face. Thus, an integral over phase space on the original enelocities and intensities By the definition of the overlap
ergy surface can be substituted for the time integral correlation coefficient only the oscillating part of the level
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velocities and the intensities are considered. Using the de-
rivative with respect to lambda of E¢l1) and Eq.(33) the
numerator becomes

~ 2me moB, detA2| "
Ca<”—T<ReEj 2 W(m

><fJ-(Qf ;) (%) ei(sj—sp)/h—e(Tj+Tp)/h>

[Pl .

FIG. 4. Birkhoff coordinates for the stadium billiard. The posi-
(48) tion coordinate can be taken to start anywhere along the perimeter.

_ o Here we have chosen the origin to be the middle of the right semi-
Because of the rapidly oscillating phases, the energy averagircle.

ing will result in zero unless§;~S,,. As stated earlier, for
every homoclinic orbit there is a periodic orbit that comesthe integral would vanish. In other words, we could use ar-

infinitesimally close to it. The same periodic orbit’'s action guments anak)gous to those under|ying Ekﬁ) to write
can be nearly equal to the actions of different segments of

the same homoclinic orbit. Thus, a diagonal approximation is - —gmo (= o T F
used for the homoclinic segments CaM)~— f dTe TH—vf dpdq
md[p,| /o H
~o1\ 112
~ 2’7TEg rnO'BJ detA21 . I?H(p q)\)
Cl=—5 <Re$ wh? ( detA X—— A E-H(.gGM], (5D
W @ 2€T; /h ‘9_51 fi(ar.a) (49) whereF is the phase space average of the weightings. Note
NPy . that the phase space averagebif(p,q;\)/d\ vanishes ex-

cluding an irrelevant drift of levels, so the RMT prediction of

Upon applying the sum rule for two-dimensional systemsC,(\) is recovered fori small enough.
and other special cases, E&§8), we have The leading order ik correction to this is more difficult
to ascertainf enters into the exponential in the integral for
~ egmo 1 (= o[ [3dS the energy smoothing, but not for the classical decay of the
Ca()\)’“mf? 0 N fj(q.a) ) dT. action changes. Upon taking the integral, this yields two
Pa (50) competing terms for thé scaling which may depend upon
the region of phase space the correlation is taken in. The

The changes in action of the homoclinic excursions are nofUmerics also show a large fluctuation of the scaling in the
weighted by thef;(qy,q;)’s. Without the additional weight- stadium(see the next section
ing the average in the changes in the action would be zero for
all positions of the Gaussian wave packet. V. STADIUM BILLIARD
In Ref.[22], a Heuristic argument for the direction of the . . . . L
weighted level velocities was given. The argument basically In this section the semiclassical theories just presented

states that the energy surface changes with the paramet%'?d the numerical results from the stadium billiard are com-
such that the action changes are minimized. Equati pared. The stadium billiard, which was proven by Bunimov-

differs from Ref. [22] in that the proper weightings, ich [48] to be classically chaotic, has become a paradigm for

_ _ o : ; studies of quantum chaos. It is defined as a two-dimensional
f;(ar.G), of the homaclinic orbits are derived here, and the finite well with the shape pictured in Fig. 4. We continu-

action changes are not correlated with the inverse periodér.‘ . . . -
Also, in Ref.[22] the homaoclinic orbits were strictly cutoff ously vary the side lengthX2while altering the radii of the

at the Heisenberg time whereas here there is an exponent rﬂdcapsR to _keep t_he area of the st;a_dmm a constant.
decay on the order of the Heisenberg time with the energ roughout this sect|on,. the Igvel velocities gnq intensities
smoothing terme equal tof/ 7, [35]. One reason thde?)] are evaluated for a stadium with= R; 1. For p|ll|ards the
reported such good results is that since the number of hom@/e€rage number of states below a given enégy approxi-
clinic segments proliferate exponentially, most of the in-mately N(E)~mAE?27#:* whereA is the area of the bil-
cluded segments occurred near the Heisenberg time and thard. This is the first term in an asymptotic series in powers
expression in Eq(50) is divided by the Heisenberg time of 7. The density of the stated N/dE, is then a constant not
(i.e., multiplied bye). depending or\ to the lowest power of if the area remains
As i—0 (ry—=), the integral in Eq.(50) would be the same.
dominated by the subset ¢8S;/J\} associated with very We will examine three different energy regimes for the
long orbits and would decouple from the weightings. Forstadium. Since billiards are scaling systems, this will corre-
small enough, as previously stated, theS;/J\ for these  spond to three different values #f The energy regimes are
orbits would approach a zero-centered Gaussian density, asgparated by a factor of 4 in energy or conversely a factor of
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FIG. 7. The lower figure is Gaussian wave packet on the bound-

FIG. 5 I_Distr_ibution of the level velocities for a stadium_ billigrd. ary. The upper figure corresponds to the wave packet in the interior
The solid line is the lowest energy range, the dotted line is theys the stadium.

middle energy range and the dash-dot line is the highest energy
range. The RMT result is given by the dashed line. The level ve-

locities have been rescaled to zero mean and unit variance. USJQQ W,KB yields a dlmensmn_less level yeIOCItyslszcallng of
h~ <, while the trace formula gives a scaling ®f *'“. The
) numerical results give a scaling of approximately >

2 in . Twice as many states are taken in each suCCesSighich lies in between the two suggesting that the marginally
energy regime so that the averages will incorporate the samgaple orbits significantly effect the level velocities.

relative size interval in energy dsis decreased. This corre- T study the intensities, the eigenstates must first be con-
sponds to the increase in the density of states for var§ing  structed. Bogomolny’s transfer operator methie®] was

The distributions of the level velocities for all three en- yseq to find the eigenstates. This method used-al( di-
ergy regimes are shown in Fig. 5 along with the randommensjonal surface of section. A convenient choice is the
matrix theory prediction. The skewness occurs because of goyndary of the stadiuntFig. 4). The generation of a full
class of marginally stable orbits in the stadium. These orbitpnase space picture of the stadium would otherwise require
are the bouncing ball orbits which only strike the straightfoyr dimensions, two positions and two momenta. The posi-
edges. Their contribution do not seem to decrease as thgn coordinate is measured along the perimeter and the mo-
semiclassical limit is approached though they should dnce mentum coordinate is defined by ac@sThe classical dynam-
is sufficiently small. There is no clear trend for the leveljcs have a quantum analog that uses source points on the
velocity distribution to approach Gaussian behavior. Thesoundary. Thus, all of the eigenfunction’s localization be-
root mean square of the level velocities also deviates fronhayior can be explored using wave packets defined in these
our calculations of théi-scaling in Sec. IM(Fig. 6). Thisis  coordinates. A coherent state on the boundary is a one-
again explained by the bouncing ball orbits whose effects argimensional Gaussian wave packet; see the lower figure in
missing from the trace formula. Quantizing only these orbitsrig. 7. The corresponding wave packet in the interior of the
stadium can be generated by a Green’s function and is shown
in the upper figure of Fig. 7. For billiards the Green'’s func-
tion is proportional to a zeroth order Hankel function of the
first kind, HSY(kr)/2i#%2. The centroid of the Gaussian wave
packet is moved along the boundary and its momentum is
changed according to the Birkhoff coordinate system. Thus,
the entire phase space of the stadium is explored.

The results for the average and the standard deviation of
the intensities using Birkhoff coordinates are shown in Figs.
8 and 9, respectively. The average is flat except for peaks
associated with the two symmetry lines of the stadium. The
eigenstates used here were even-even states, so there is twice

10 LL P I B B the intensity along the two symmetry lines that bisect the end
0.2 04 06 081 caps and the straight edges. The standard deviation has two
1/h large peaks centered around the bouncing ball orbits. The
rest of the figure is relatively flat with a few small bumps.

FIG. 6. Root mean square of the level velocities as a function ofR@ndom matrix theory would predict this to be a flat figure
1/4. The solid line is the theoretical value from Sec. IV and the with small oscillations. The marginal stability of the bounc-
dashed line is the WKB results for the bouncing ball motion. Theing ball orbits can be seen but no other feature of the sta-
best fit line through the stadium results is the dotted line. dium, except for the horizontal bounce, is picked out by
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FIG. 8. Average overlap intensity for a Gaussian wave packet 02 04 06 08 1
defined in the Birkhoff coordinates of the stadium. l/h
looking at the intensities. Figure 10 shows thescaling of FIG. 10. Root mean square of the overlap intensities as a func-

the root mean square for the intensities where the wavéon of 1. The wave packet was placed on the horizotsalid
packet is placed on various periodic orbits. The theory frongircles, V (solid squares diamond (solid triangle$, rectangle
Sec. IV predicts a smaller scaling than the numerical resultépen circleg and bow tie(open squargsorbits. The solid line is
of the stadium. the theorectial value of! from Sec. IV and the dotted line is the
The he|ghts of the bouncing ball peaks can be approxibest fit of the stadium results which f81'3. The intensities have
mated by quantizing the rectangular region of the stadiumpeen rescaled dt=1 so that they occupy the same area of the plot.
The intensities obtained from this calculation are weighted
by the ratio of the density of the bouncing ball stgté8] to  [N~?=(114) Y?~0.09] away from zero as predicted by
the total density of states. The Gaussian wave packet igandom matrix theory. Thus, phase space localization is also
placed in the center of the straight edge and the middle emoccurring in this region. The point exactly in between the
ergy regime is used. The results of this approximation argeaks is the point in phase space associated with the hori-
80.6 and 320.5 for the average intensity and rms intensityzontal bounce. The series of smaller peaks leading up to the
respectively, compared to 80.7 and 386.3 for the numericahrge peaks are the gateways into the vertical bouncing ball
calculations of the stadium. area. Figure 12 is a plot of the orbits corresponding to these
Random matrix theory suggests that the correlation coefpeaks. They are periodic orbits which only strike the endcaps
ficient for a generic chaotic system should result in zero. Onwice and become almost vertical. Orbits must pass through
the other hand, using the correlation coefficient for the stathese regions in order to enter or exit the vertical bounce
dium in Birkhoff coordinates, we found that some of the states.
states gave nonzero correlations, Fig. 11. In fact, large cor- As the energy of the system is increadee., # is de-
relations are found for nearly all the states in the stadiuntreaseyi the results of the correlation function remain quali-
billiard which means that there exists phase space localizaatively the same, Fig. 13. All the peaks and valleys stay in
tion for most of the states. The large positive values of thehe same place. The numerical results of the overlap corre-
correlation coefficient in the center of the figure again corre{ation coefficient fluctuate depending upon the area of phase

spond to the bouncing ball states. Classically, this area ofpace being considered. This is consistent with the semiclas-
phase space is difficult to enter and leave. Hence, the local-

ization is expected to be stronger for this area of phase space.
The area beneath the peaks is several standard deviations

FIG. 11. Overlap correlation coefficient for the stadium using
FIG. 9. Root mean square of the overlap intensity for a GaussiaBirkhoff coordinates. The energy range of the averaging is 2200—
wave packet defined in the Birkhoff coordinates of the stadium. 2600 whereghi=m=1.
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organized by the homoclinic orbits. The manner in which a
chaotic system’s eigenstates approach ergodicity:-as0

will depend on a new time scale, i.e., that required for the
homoclinic excursions to explore the available phase space
fully.

Parametrically varied data exist that can be analyzed in
this way. In the Coulomb-blockade conductance data to the
extent that the resonance energy variations are related to a
single particle level velocityminus a constant charging en-
ergy and absent residual interaction effg¢stsould show cor-
relations. We mention also that the microwave cavity data
can be studied with even more flexibility since they have
measured the eigenstates and can therefore meticulously
study a wide range ofe) to get a complete picture of the
eigenstate localization properties.

Finally, this analysis could be applied in a very fruitful
, , , ) way to near-integrable and mixed phase space systems. In
FIG. 12. Trajectories corresponding to the peaks leading up Ohese cases, standard random matrix theory would not give
the bouncing ball orbits. The lower figure is a contour plot of Fig. yhe 7 eroth order statistical expectation, but the localization

13 Th%solld circles dco.rreSpond tolthe bounce points ?f the tlraéez/ould still be determined by the return dynamics in the
tories. Geometric and time-reversal Symmetrles were also Incluae emiclassical apprOXimation.

sical theory in Sec. IV. More details of the system are ex- ACKNOWLEDGMENTS

plored as# is decreased, since the phase space is divided . . . .
into finer areas. Thus, more detailed information about the e gratefully acknowledge important discussions with B.

phase space localization of the system is observed in then?:tlrlé%j:gagbyiﬁj%? %nrgnstuﬁ%orf\lfé%rﬁpm-ggégfgé Sa%ld
overlap correlation coefficient at smaller valueshof )

the Office of Naval Research under Grant No. N0O0014-98-
VI. CONCLUSIONS 1-0079.

We have shown that intensity weighted level velocities APPENDIX A: GAUSSIAN INTEGRATION
are a good measure of the localization properties for chaotic
systems. They are far more sensitive to localization tha
similarly weighted level curvaturevhich are closely re-
lated to level statistigs Thus, a system can be RMT-like, yet

Inserting Eq.(32) into Eq. (31), the strength function in-
Volves twoN-dimensional integrals whené is the system’s
number of degrees of freedom,

the eigenstates are not behaving ergodicélly RMT pre- S, ool E)= _—1Im 1 ( 1\
dicts). @08 T ih(2mih) @ DR\ mo?
The stadium eigenstates show a great deal of localization.
Not only are the vertical bouncing ball orbits predicted by J 2 i
the measure, but also other orbits. The overlap correlation x 2,: D" exp( —ip,- (a—a")/%
coefficient is very parameter dependent. Choosing a different 9im 2 ) 9in 2
parameter to vary would highlight other sets of orbits de- —(9—0,)20°= (9" =)/ 20
pending on how strong the perturbation effects those orbits. +iSj(q,q’;E)/h—ivj’ 7/2dgdq’. (A1)

The degree of localization can be predicted by the return
dynamics. In a chaotic system, all the return dynamics can b&o evaluate the integrals over andq’, the action is qua-
dratically expanded about the poirgs andq; ,

Si(a,9;E)=5;(q¢,9i ;E) +ps- (d—as) —pi- (A" —q)

N (i)
1 ap; _ .
+3 .2;' (W) (9" =af")(q®~q)

Ay

ap{? 4
- =] (@)@ )

a9 ) .

ap(i) .

+2[ ) (@0-qf)(q o) |
FIG. 13. The same as Fig. 11 except for a higher energy range é’q’(k

of 9200-10000 wherde=m=1. Note the finer structure of the

various peaks. (A2)

)
Qi
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It is useful to define the vector N
, , m, . cof(M 2}
Z:(Zlv CC 1ZN 12]_1 ERE 1ZN)1 (A3) 5a,b |0'2( (?pga)) 5a,b i0'2 2I al ( b'l)
2 2k gg®
d0q q

where 2 2h detM 2t

. - f
z=(q"=qf")/o, | io?
- _ _Mll(MZl)fl

z/=(q M-q")/0. (A4) 2 2h
Thus, the integrals become . i o2 apga) i o2 cof(Mg}a) i o2 V2 -117
-1 1 1 |2 Aab= =25 o) T 2h gemz 2al M)l
0 0sd E) = —Im- ; ( 2) 9 g;
T ih(2min)@" DR\ To '
o 107 9PF) - io? cof(MZL)
xj EJ: |D(| Y20 %exp{—z-A-z—Db-z+c}dz, ab™ 2ﬁ q(b) . T 2% detM2
(A5) io?
— _(M21)7l
whereA is composed of fouN-dimensional matrices 2h '
11 pl2 )
A A 22 6a,b |0'2 (?pl(a)
A=| p21 p22 (AB) Asr= 3 + o
ag'®)
a7,
and N
b=(isp"—asqi®, ... iopN—sqN isp™ s g2 > My nCOMPZL
(1) L 5o 5qN) _Oab 10 1
=6q;, ...06py Y —6q) (A7) 2 2% detM 2L
i - - - | 00?1y
5p(|):(pg)_p$|))o./ﬁ, :z—ﬁ(M ) M <, (All)
opt=(pP—pM)ait, wherem; , are elements of the stability matrix and it
is the signed minor oM?!. D, is a determinate involving
sq=(q®"—qM) S ke
A Qe — Qi ' second derivatives of the actions
89" = (a9~ a")la, (A8) 2SS
and dqaq’  999E 1 628‘
. . D=
i i (9r—9a)° T 25 28 N[ ™ | 7093
¢=25i(ar.q ;E)_%pa'(Qf_Qi)_T — lq CRNIEC
o 9Eoq’ JE
(0i—0,)? ivjm 1 2f\ @D
— - . (A9) _ o x21
207 2 - |q(N)||d'(N)| i o2 |A | (A12)
The matrixA can be expressed in terms of the stability ma-The tildes in the determinants in the above equation are used
trix M, whereM has the same form as EGA6) to exclude theNth coordinate. To obtain the above result
p p’ g™ and g™ are chosen to be locally oriented along the
a Mg/ (A10)  trajectory where the dots indicate time derivatives. SiAce
is a symmetric matrix, the result for a general Gaussian in-
Thus, tegral is used and, hence, the strength function becomes

1/2

1 1 o2\ 2/ op | (@-1)12 724\ 172
Sa,os&E):7Im—iﬁ(2mﬁ)(d—1)/2(?) (F) 2 (detA)

Z (deti&ﬂ)l’z 1 )1’2 p[lb ALt
. . exp —D- . Ci,
1/25 detA | | |g™||qr ™) 4
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where the time derivatives are evaluated at the saddle pointahereal{’ andb{[? are linear combinations of the elements
of theL andL ! matrices. Because in general chaotic sys-

APPENDIX B: SUM RULE tems\>0, theb{?’s may be omitted without seriously ef-
FOR THE STRENGTH FUNCTION fecting the above sum. All the determinants including the
The determinant of the (2x 2N) matrix A numerator and denominator of detas well as def?., thus,
. L, will involve products of Eq.B5). The homoclinic orbits in
'__ IiM]_]_(MZ:L)—]_ Ii[(M”)‘l]T the sum begin and end at the intersections of the stable and
2 2h 21 unstable manifolds near the Gaussian centroid. Since neither
detA=det i o2 | o2 manifolds may cross themselves, then in the vicinity of the
E(Mﬂ)_l 5= %(Mﬂ)—lm 22 Gaussian centroid the branches of each manifold are nearly
B1) parallel to themselves. Thus, to an excellent approximation,

the same similarity transformation will diagonalize the sta-

can be reduced to determinants i N) matrices by using bility matrix for each individual orbit, regardless of the pe-
the relation [(M?Y)~1]T=—M¥2+MI(M2)~IM2 and riod. Consequently, the elements lofand L~ are period

some row and column manipulatiofsl], so that independent. _

5 Connections can be made between the determinants and
o M1ls M22 the Kolmogorov-Sinai entropy. The KoImogorov—Si_nai en-
4t tropy hgs of a system can be expressed using Pesin’s theo-
rem as the sum of the Lyapunov exponents with positive real

] / de(M?y). (B2) Pat

The coordinates parallel to the trajectory do not mix with the hks= EI Ai (B6)
transverse coordinates, since a point on an orbit will remain
on that particular orbit. Thus, thidth rows and columns of If there is no mixing between the different coordinates, then
the individual matrices in the above expression are zero exthe individual matrice*, M*2 M?., andM?# are diago-
cept for the (N,N) elements. nal. Thus, each matrix element depends only upon one Lya-
It is convenient to re-express the submatrices of the stgpunov exponent and the determinants are proportional to
bility matrix in terms of the Lyapunov exponents. Ligt;} exp(—hgd). This is the case for two-dimensional systems
be the set of Lyapunov exponents whose real part is positiveshere the parallel and perpendicular coordinates in the sta-
ordered such thak;\,>--->\y_;. The Lyapunov expo- bility matrix separate as mentioned above. Hence, we have

detA= de%

h a?
+i _M21__M12
I(UZ h

N—-1

nents along the parallel coordinate are zero and we will only detAzY
work with the reduce@2(N—1)X2(N— 1)] stability matrix ——|ocexp( — hyst). (B7)
in what follows. LetA be the diagonal matrix of the eigen- detA

values of the reduced stability matrix Unlike the periodic orbits, the homoclinic sum is over

ettt ... 0 0 B 0 segments of the orbits. The number of homoclinic points will
proliferate exponentially at the same rate as the fixed points
in the neighborhood which is proportional to elpl) where
0 .- enat 0 ... 0 ht is the topological entropy. This is demonstrated by exam-
0o ... 0 e Mt ... 0 : ining the partitioning of the phase space mentioned in Sec.
IV B which has exponential growth. The partitioning reflects
the symbolic dynamics of the system. The symbolic code
0o - 0 0 .- e M1t uniquely describes each orbit so that amount of cudeti-
(B3)  tions) cannot grow faster than the number of periodic points,
o . . since each codépartition) cannot represent more than one
Thus, by a similarity transform the reduced stability matrix periodic point.
can be written in terms of the Lyapunov exponents, i.e., Finally, the sum rule is obtained by setting the topological
M=LAL L. (B4) entropy and Kolmogorov-Sinai entropy equal to each other.
Then, for the special case of no mixing in the stability matrix
Hence, each of the elements of the stability matrix can beass mentioned above the combination of the amplitudes and
written as the number of orbits yields

N ~
detA?
L= (KMt 4 K g= Akt
m ; ajj e +bje e, (B5) ; detA

...HJdT..._ (B8)
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