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Exploring phase space localization of chaotic eigenstates via parametric variation

Nicholas R. Cerruti, Arul Lakshminarayan,* Julie H. Lefebvre,† and Steven Tomsovic
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~Received 1 June 2000; published 21 December 2000!

In a previous paper@Phys. Rev. Lett.77, 4158 ~1996!#, a new correlation measure was introduced that
sensitively probes phase space localization properties of eigenstates. It is based on a system’s response to
varying an external parameter. The measure correlates level velocities with overlap intensities between the
eigenstates and some localized state of interest. Random matrix theory predicts the absence of such correlations
in chaotic systems whereas in the stadium billiard, a paradigm of chaos, strong correlations were observed.
Here, we develop further the theoretical basis of that work, extend the stadium results to the full phase space,
study the\ dependence, and demonstrate the agreement between this measure and a semiclassical theory based
on homoclinic orbits.
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I. INTRODUCTION

The two general motivations for our investigation are u
derstanding better the nature of eigenstates of bounded q
tum systems possessing ‘‘simple’’ classical analogs, and
ploring new features of such systems’ behavior as a sys
parameter is smoothly varied. Simple in this context refers
few degrees of freedom and a compact Hamiltonian. Nev
theless, the classical dynamics may display a rich variety
features from regular to strongly chaotic motion. We foc
on the strongly chaotic limit for which semiclassical quan
zation of individual chaotic eigenstates does not hold, a
the correspondence principle is less well understood@1#.
Even though there has been some recent progress@2#, it turns
out that with a detailed understanding of chaotic system
statistical theory provides a well-developed, alternative
proach to these difficulties. Twenty years ago, Berry@3# con-
jectured and Voros@4# discussed that in this case as\→0
the eigenstates should respect the ergodic hypothesi
phase spaced@E2H(p,q)#, as it applies to wave functions
In essence, the eigenmodes should appear as Gaussia
dom wavefunctions locally in configuration space with th
wave vector constrained by the ergodic measure of the
ergy surface. Discussion of the properties of random wa
and recent supporting numerical evidence can be foun
Refs.@5,6#.

The second general motivation relates to a long rec
nized class of problems, i.e., a system’s response to para
ric variation. Our interest here is restricted to external, c
trollable parameters such as electromagnetic fie
temperatures, applied stresses, changing boundary co
tions, etc., through whose variation one can extract new
formation about a system not available by other means
multitude of examples can be found in the literature@7#. A
recent concern has been universalities in the response of
otic or disordered systems and statistical approaches to m
suring the response@8#. Universal parametric correlation
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have been derived via field theoretic or random matrix me
ods for quantities involving level slopes~loosely termed ve-
locities in this paper!, level curvatures, and eigenfunctio
amplitudes@9,10#. In contrast, our motivation is not the un
versal features per se for they cannot tell us anything spe
about the system other than it is, in fact, chaotic and/or sy
metry is present. Rather we are interested in what sys
specific information can be extracted in the case that
system’s response deviates from universal statistical la
The specific application discussed in this paper shows h
one can decipher phase space localization features of
eigenstates. The theory naturally divides into a two-step p
cess. One must first understand any implied limiting univ
sal response of chaotic systems. Next, one must develo
theory which gives a correct interpretation of any deviatio
seen from the universal response. The necessarily close
terplay between theory and observation required to ded
new information forms part of the attractiveness of inves
gating parametric response.

Taking up the first step of understanding universal
sponse, an expected but rarely discussed property is th
dependence of eigenvalue and eigenfunction fluctua
measures@11# which is found in the random matrix theorie
anticipated to describe the statistical properties of quan
systems with chaotic classical analogs@12,13#. Coupled with
Berry’s conjecture mentioned above, these properties im
a ‘‘democratic’’ response to parametric variation for an e
godically behaving quantum system. The perturbation c
nects one state to all other states locally with equal proba
ity. The variation of any one eigenstate or eigenvalue ove
large enough parameter range will be statistically equiva
to their respective neighboring states or levels.

In a pioneering work on the ergodic hypothesis using
stadium billiard, now a paradigm of chaos studies, M
Donald noticed larger than average intensities of the eig
states in certain regions@14#. In his thesis he states that ‘‘
small class of modes~bouncing ball, whispering gallery, etc.!
seem to correspond naively to a definite set of ‘special’
orbits.’’ Heller initiated a theory concerning these large i
tensities when he modified the random wavefunction pict
with his prediction and numerical observations of eigenst
scarring@15#. He derived a criterion for eigenstate intensi
in excess of the ergodic predictions along the shorter,
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CERRUTI, LAKSHMINARAYAN, LEFEBVRE, AND TOMSOVIC PHYSICAL REVIEW E63 016208
unstable periodic orbits. Scarring is thus one possible ph
space ‘‘localization’’ property of a chaotic eigenstate. Oth
possibilities result from time scales not related directly to
Lyapunov instability such as transport barriers in the form
broken separatrices@16#, and cantori@17,18#, or diffusive
motion@19#. In the context of this paper, we take localizatio
to mean some deviation from the ergodic expectation bey
the inherent quantum fluctuations, and it creates the poss
ity of a nondemocratic response to parametric variation
perturbation could preferentially connect certain states
classes of states, thus leading to additional short-ra
avoided crossings or like level movements within a parti
lar class, etc.

Debate ensued Heller’s work on eigenstate scarring
part, because of the difficulty in quantitatively characterizi
and predicting its extent in either a particular eigenstate
even collective groups of eigenstates. Judging from the
lier literature, it was easier to graph eigenstates in orde
see the scarring by eye than define precisely what it mean
what its physical significance is. Furthermore, he lineariz
the semiclassical theory which was insufficient for a full d
scription of scarring. We remark that recent work sugge
the opposite, i.e., the linearized theory is sufficient assum
\ is smaller than some system specific value which is ‘‘sm
enough’’ @20#. However, many of the experimental and n
merical investigations are far from this regime and the n
linear dynamical contributions are essential for understa
ing most of the work being done. The theory incorporati
nonlinear dynamical contributions@2,21# was developed
much later than Heller’s introduction of scarring. It is bas
on heteroclinic orbit expansions for wave packet propaga
and strength functions. Ahead, we make extensive use
these forms to derive a semiclassical theory applicable
problems involving parametric variation.

In a previous paper@22#, one of us~S.T.! introduced a
measure that very sensitively probes phase space localiz
for systems having continuously tunable parameters in t
Hamiltonians. It correlates level motions under perturbat
with overlap intensities between eigenstates and optim
localized wave packet states. The basic idea is that the w
packet overlap intensities select eigenstates that potent
have excess support in the neighborhood of the phase p
at the wave packet’s position and momentum centroids.
perturbation will push these levels somewhat in the sa
direction depending on how it is distorting the energy surfa
near that particular phase point. If the level velocities as
ciated with those states have similar enough values, t
significant nonzero correlations will result that reveal the
calization. The measure can be used in a forward or rev
direction. If phase space localization is present in a system
interest, then it predicts experimentally verifiable manifes
tions of that localization. Conversely, one can first expe
mentally determine the level-velocity–overlap-intens
measure in that system for the purpose of inferring the e
tence and extent of localization.

Our purpose in this paper is to give a complete accoun
that paper, develop further the semiclassical theory, and
plore the full phase space and\ behavior of the stadium
billiard, a continuous time system. In a companion pa
01620
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immediately following this one, we give the theory for qua
tized maps~discretized time! @23#. The next section intro-
duces strength functions and a new class of correlation c
ficients. Section III utilizes ergodicity and random wav
properties to motivate the introduction of random matrix e
sembles. The ensembles describe the statistical properti
chaotic systems in the\→0 limit. The correlation measure
vanish for these ensembles indicating the absence of lo
ization and universal response to perturbation~i.e., parameter
variation!. Section IV gives the semiclassical theories
level velocities, strength functions, and overlap intensi
level velocity correlation coefficients. We finish with a fu
treatment of the stadium billiard and concluding remarks

II. PRELIMINARIES

Consider a quantum system governed by a smoo
parameter-dependent Hamiltonian,Ĥ(l) with classical ana-
log H(p,q;l). We suppose that the dynamics are chaotic
all values of thel range of interest, and suppose the abse
of symmetry breaking. Then the expectation is that all sta
tical properties are stationary with respect tol. Without loss
of generality, we also assume the phase space volume o
energy surface is constant as a function ofl. This ensures
that the eigenvalues do not collectively drift in some dire
tion in energy, but rather wander locally. We use the sa
strength function Heller employed in his prediction of sca
ring @15# except slightly generalized to include paramet
behavior

Sa~E,l!5
1

2p\E2`

`

dteiEt/\^aue2 iĤ (l)t/\ua&

5Tr$ p̂ad@E2Ĥ~l!#%

5(
n

pan~l!d@E2En~l!#;

pan~l!5^auEn~l!&u2, ~1!

wherep̂a5ua&^au. Sa(E,l) is the Fourier transform of the
autocorrelation function of a special initial stateua& of inter-
est. AheadS̄a(E,l) will denote the smooth part resultin
from the Fourier transform of just the extremely rapid initi
decay due to the shortest time scale of the dynamics~zero-
length trajectories!. We will take ua& to be a Gaussian wav
packet because of its ability to probe ‘‘quantum pha
space,’’ but other choices are possible. Say momentum s
localization were the main interest, the natural choice wo
be a momentum eigenstate.ua& can be associated with
phase space imagera(p,q) of Gaussian functional form us
ing Wigner transforms or related techniques.ra(p,q) turns
out to be positive definite and maximally localized in pha
space, i.e., it occupies a volume ofhd.

For a fixed value of the parameter, an example stren
function is shown in Fig. 1. If the wave packet is center
somewhere on a short periodic orbit, large amplitudes n
essarily indicate significant wave intensity all along the or
as seen in the inset eigenstates. This behavior cannota priori
8-2
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EXPLORING PHASE SPACE LOCALIZATION OF . . . PHYSICAL REVIEW E 63 016208
be stated to be obviously in violation of the quantum sta
tical fluctuation laws even if it appears so. That remains to
determined. With the inclusion of parametric variation, t
eigenvalues of a chaotic system are supposed to move a
smoothly varying curves of the type shown in the upp
square of Fig. 2. Many of the previous studies of parame
variation focussed on the properties of such level curves
great deal is known about the distribution of level velocit
@24,25#, the decay of correlations in parametric statist
@10,26#, the distribution of level curvatures@27–29#, and the
statistics of the occurrences of avoided crossings@30,31#.

We now superpose the strength function overlap inten
information on Fig. 2 in the lower square as vertical lin
centered on the levels; the lengths are scaled by the inte
ties ~3D versions of this figure turned out not to be ve
helpful!. By considering the full strength function and n

FIG. 1. Strength function for the stadium billiard. The Gauss
wave packet is centered in the stadium with momentum direc
towards the end cap. The large intensities are where the sca
occurs.

FIG. 2. Illustration of ergodic behavior. The upper square sho
how the energy eigenvalues move as a function ofl. The lower
square is a graphical representation ofSa(E,l). Each small line
segment is centered on an eigenvalue and its lambda value.
heights are proportional to the overlap intensity with a wavepac
The level velocities and overlap intensities were produced usin
Gaussian orthogonal ensemble.
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just the level curves~i.e., density of states!, the eigenstate
properties can be more directly probed. A new class of s
tistical measures can be defined that cross correlate inte
ties with levels. The most evident examples are the four c
relation coefficients involving both level curves an
eigenstate amplitudes that can be defined from the follow
quantities:~i! the level velocities]En(l)/]l, ~ii ! level cur-
vatures]2En(l)/]l2, ~iii ! overlapspan , and ~iv! overlap
changes ]pan /]l. The most important is the overla
intensity-level velocity correlation coefficientCa(l) which is
defined as

Ca~l!5

K pan

]En~l!

]l L
E

sasE
, ~2!

wheresa
2 andsE

2 are the local variances of the overlaps a
level velocities, respectively. The brackets denote a local
ergy average in the neighborhood ofE. It weights most the
level velocities whose associated eigenstates possibly s
common localization characteristics and measures the
dency of these levels to move in a common direction. In t
expression, the phase space volume remains constant so
the level velocities are zero centered~otherwise the mean
must be subtracted!, andCa(l) is rescaled to a unitless quan
tity with unit variance making it a true correlation coeffi
cient. The set of states included in the local energy averag
can be left flexible except for a few constraints. Only en
gies whereS̄a(E,l) is roughly constant can be used or som
intensity unfolding must be applied. The energy range m
be small so that the classical dynamics are essentially
same throughout the range, but it must also be broad eno
to include several eigenstates.

Ca(l) thus has a simple form and the additional adva
tage of involving quantities of direct physical interest. Lev
velocities ~curvatures also! arise in thermodynamic proper
ties of mesoscopic systems@32#, and overlap intensities often
arise in the manner used to couple into the system@33#. It is
the most sensitive measure of the four possible comb
tions, the others being the intensity curvature, intens
change curvature, and intensity change level velocity co
lation coefficients. The first two are far less sensitive m
sures of eigenstate localization effects, even though cu
ture distributions are affected by localization because of
relative rareness of being near avoided crossings where
vatures are large. The last shows no effect since intens
will change whether the level is moving up or down. The
three measures will not be considered further in this pap
but we did calculate them to verify their lack of sensitivity

III. ERGODICITY, RANDOM WAVES,
AND RANDOM MATRIX THEORY

Semiclassical expressions for wave functions have
form

C~x!5(
n

An~x!exp@ iSn~x!/\2 innp/2#, ~3!

d
ng

s
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a
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CERRUTI, LAKSHMINARAYAN, LEFEBVRE, AND TOMSOVIC PHYSICAL REVIEW E63 016208
whereSn(x) is a classical action,nn is a phase index, and
An(x) is a slowly varying function given by the square ro
of a classical probability. The classical trajectory underlyi
each term arrives at the pointx with momentum, pn
5¹Sn(x). For a chaotic system, a complete theory lead
to an equation of the form of Eq.~3! does not exist@1#.
Nevertheless, Berry@3# conjectured that for the purposes
understanding the statistical properties of chaotic eigenfu
tions, the ergodic hypothesis implies that the true eigenfu
tion will appear statistically equivalent to a large sum
these terms each arriving with a random phase~since each
wave contribution extends over a complicated, chaotic pa!.
For systems whose Hamiltonian is a sum of kinetic and
tential energies, the energy surface constraintd@E
2H(p,q)# fixes only the magnitude of the wave vector. T
eigenfunctions therefore appear locally as a sum of rando
phased plane waves pointing in arbitrary directions w
fixed wave vectork. The central limit theorem asserts su
waves are Gaussian random. An example is shown in Fi
for a two-degree-of-freedom system where the spatial co
lations fall off as a Bessel functionJ0(kr).

If the eigenstates truly possessed these characteris
then a perturbation of the Hamiltonian would have mat
elements that behaved as Gaussian random variables w
variance depended only on the energy separation of the
eigenstates, i.e., an energy-ordered, banded random m
The energy ordering separates the weakly interacting sta
and therefore only the local structure is of importance he
The range of the averaging carried out in the correlat
function is taken to be much less than the bandwidth of s
a random matrix. The ultimate statistical expression of t
structure is embodied in one of the standard Gaussian
sembles~GE!. We construct a parametrically varying e
semble$Ĥ(l)% as

FIG. 3. Realization of random wavefunctions in two degrees
freedom. A superposition of 30 plane waves with random direct
and phase shift, but fixed magnitude of the wave vector is sho
01620
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Ĥ~l!5Ĥ01lĤ1 , ~4!

where Ĥ0 and Ĥ1 are independently chosen GE matrice
Note that the sum of two GE matrices is also a GE ma
which thus satisfies our desire to consider stationary stat
cal properties asl varies.

It is unnecessary to specify the abstract vector space

$Ĥ(l)% ~only the dimensionality of the space! in the defini-
tion of the ensemble. However,ua& has to be overlapped
with the eigenstates, and thus a localized wave packet se
ingly must be specified. In fact, the specific choice is co
pletely irrelevant because the GEs are invariant under the
of transformations that diagonalize them.ua& can be taken as
any fixed vector in the space by invariance. The overlaps
level velocities turn out to be independent over the ensem
since diagonalizing$Ĥ0% leaves$Ĥ1% invariant and the level
velocities are equal to the diagonal matrix elements ofĤ1.
With the overbar denoting ensemble averaging

Ca~l!5

K pan

]En

]l L
E

sasE
5

^pan&EK ]En

]l L
E

sasE
50. ~5!

In fact, it is essential to keep in mind thateverychoice ofua&
gives zero correlations within the random matrix framewo
The existence of even a singleua& in a particular system tha
leads to nonzero correlations violates ergodicity.

It is straightforward to go further and consider the me
square fluctuations ofCa(l),

Ca~l!25

S K pa i

]Ei

]l L
E

D 2

~sasE!2

5
1

~NsasE!2 (
i

N

(
j

N

pa i

]Ei

]l
pa j

]Ej

]l

5
1

~NsasE!2 (
i

N

(
j

N

pa i pa j

]Ei~l!

]l

]Ej~l!

]l

5
1

~NsasE!2 (
i

N

pa i
2 S ]Ei~l!

]l D 2

5
1

N
, ~6!

whereN is the effective number of states used in the ene
averaging. Again the level velocities are independent of
eigenvector components. The]Ej (l)/]l5^ j uĤ1u j & and thus
the iÞ j terms vanish due to the independence of the dia
nal elements of the perturbation leaving only the diago
terms that involve the quantities that respectively enter
variance of the eigenvector components and the mean sq
level velocity. The final result reflects the equivalence
ensemble and spectral averaging in the large-N limit. There-
fore, in ergodically behaving systems,Ca(l)506N21/2 for
every choice ofua&. Figure 2 was made using the orthogon
GE. It illustrates a manifestation of ergodicity, i.e., univers
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EXPLORING PHASE SPACE LOCALIZATION OF . . . PHYSICAL REVIEW E 63 016208
response of the quantum levels with respect tol and demo-
cratic behavior of the overlap intensities.

IV. SEMICLASSICAL DYNAMICS

We develop a theory based upon semiclassical dynam
which explains how nonzero overlap correlation coefficie
arise out of the localization properties of the system. T
theory simply reflects the quantum manifestations of fin
time correlations in the classical dynamics. In a chaotic s
tem, the classical propagation ofra(p,q) will relax to an
ergodic long time average. However, wave packet revival
the corresponding quantum system earlier than this re
ation time can occur@34#. In Heller’s original treatment of
scars@15#, he uses arguments based upon these recurre
which occur at finite times to infer localization in the eige
states.

In the correlation function, the intensitiespan , weight
most heavily the level motions of the group of eigensta
localized nearra(p,q), if indeed such eigenstates exist.
we construct the Hamiltonian as in Eq.~4! whereĤ0 is the
unperturbed part, then by first-order perturbation theory,
level velocities are the diagonal matrix elements ofĤ1 just
as in random matrix theory. We showed in the previous s
tion that in random matrix theory these elements weigh
with the intensities are zero centered. For a general quan
system the equivalent expectation would be fluctuati
about the corresponding classical average of the perturba
over the microcanonical energy surfaced@E2H(p,q)#. In
this case,Ca(l)'0 for all ua&. On the other hand, the quan
tum system will fluctuate differently if there is localization
the eigenstates. Note that this means some choices ofua&
will still lead to zero correlations. It only takes one statis
cally significant nonzero result to demonstrate localizat
conclusively, but to obtain a complete picture, it is necess
to consider manyua& covering the full energy surface.

We begin by examining the individual components of t
overlap correlation coefficient, the level velocities and inte
sities. Their\ dependences are derived and also they
shown to be consistent with random matrix theory as\→0.
Finally, the weighted level velocities are discussed. We g
an estimate based upon a semiclassical theory involving
moclinic orbits for the slope of the large intensities.

A. Level velocities

In random matrix theory~RMT! level velocities are
Gaussian distributed as would also be expected of a hig
chaotic system in the small\ limit. Thus, the mean and
variancesE

2 give a complete statistical description in th
limiting case and are the most important quantities more g
erally. Since the purpose of this section is to derive th
scaling properties, it is better to work with dimensionle
quantities. Thus, the dimensionless variance is defined
s̃E

2[d̄2(E,l)sE
2 where d̄(E,l) is the mean level density

which is the reciprocal of the mean level spacing.
We begin by following arguments originally employed b

Berry and Keating@35# in which they investigated the leve
velocities normalized by the mean level spacing for clas
01620
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cally chaotic systems with the topology of a ring threaded
quantum flux. In order to make the discussion self contain
we will summarize their basic ideas using their notation a
then extend their results to include level velocities for a
classically chaotic system. More recently, Leboeuf a
Sieber @36# studied the non-universal scaling of the lev
velocities using a similar semiclassical theory. T
\-dependence of the average and root mean square
velocities for an arbitrary parameter change is derived an
consistent with the previous works.

The smoothed spectral staircase is

Ne~E,l!5(
n

ue@E2En~l!# ~7!

and taking the derivative with respect to the parameter,
obtain

]Ne~E,l!

]l
5(

n
de@E2En~l!#

]En~l!

]l
. ~8!

The quantitye is an energy smoothing term which will b
taken smaller than the mean level spacing. Our calculati
will use Lorentzian smoothing where

de~x!5
e

p~x21e2!
. ~9!

The energy averaging of Eq.~8! yields

K ]Ne~E,l!

]l L
E

5d̄~E,l!K ]En~l!

]l L
n

. ~10!

Thus, in order to obtain information about the level velo
ties, we will evaluate the spectral staircase.

The semiclassical construction of the spectral staircas
broken into an average part and an oscillating part

Ne~E,l!5N̄~E,l!1(
p

Bp~E,l!expH i FSp~E,l!

\ G J
3expH 2eTp~E,l!

\ J . ~11!

The average staircaseN̄(E,l) is the Weyl term and to lead
ing order in\ is given by

N̄~E,l!5
1

hdE E u@E2H~p,q;l!#dpdq. ~12!

This simply states that each energy level occupies a volu
hd in phase space. A change in the phase space volume
produce level velocities due to the rescaling. We wish
study level velocities created by a change in the dynam
not the rescaling. Hence, without loss of generality we w
require the phase space volume to remain unchanged
]N̄(E,l)/]l50. The oscillating part of the spectral stai
case is a sum over periodic orbits. In general, a perturba
will alter the value of the classical actions,Sp , the periods
Tp and the amplitudes
8-5
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Bp5
exp~ inp!

2pAdet~M p21!
, ~13!

whereM p is the stability matrix andnp is the Maslov phase
index. The summation is most sensitive to the changing
tions and periods because of the associated rapidly osc
ing phases, i.e., the division by\ in the exponential. Since
the energy smoothing terme is taken smaller than a mea
level spacing, it scales at least by\d and the derivatives o
the period vanish as\→0. Thus, only the derivatives of th
actions are considered, and the oscillating part of the s
case yields

K ]Nosc~E,l!

]l L
E

5K (
p

BpF i

\

]Sp~E,l!

]l GexpH i FSp~E,l!

\ G J
3expH 2eTp~E,l!

\ J L
E

. ~14!

It has been shown@37# that the change in the action for
periodic orbit is

]Sp

]l
52E

0

Tp ]H~p,q;l!

]l
dt ~15!

The above integral is over the path of the unperturbed o
and the Hamiltonian can have the form of Eq.~4! whereH0
is the unperturbed part. Equation~14! can be solved withou
the explicit knowledge of the periodic orbits in the\→0
limit. The quantity]Sp /]l is replaced by its average. By th
principle of uniformity@38#, the collection of every periodic
orbit covers all of phase space with a uniform distributio
Thus, the time integral can be replaced by an integral o
phase space upon taking the average

lim
T→`

1

TK ]Sp

]l L
p

5
21

V E ]H~p,q;l!

]l
d@E2H~p,q;l!#dpdq,

~16!

where V is the phase space volume of the energy surfa
The above treatment of the average is only valid for the lo
orbits, but we may ignore the finite set of short orbits in t
sum for small enough\. ]H(p,q;l)/]l is the perturbation
of the system that distorts the energy surface. Since the p
space is assumed to remain constant, then the average ch
in the actions of the periodic orbits is zero in the limit
summing over all the orbits. If only a finite number of orbi
are considered, corresponding to a finite\, then there might
be some residual effect of the oscillating part which w
cause a deviation from RMT.

Continuing to follow Berry and Keating, the mean squa
of the counting function derivatives can be expressed
terms of the level velocities
01620
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K S ]Ne

]l
~E,l! D 2L

E

5K (
n

(
m

]En

]l
~l!

]Em

]l
~l!

3de@E2En~l!#de@E2Em~l!#L
E

.

~17!

For a nondegenerate spectrum, the summation is non
only if n5m because of the product of the two delta fun
tions. Since Lorentzian smoothing is applied, then

de
2~x!'

1

2pe
de/2~x! ~18!

for e!d̄21. Thus we have

K S ]Ne

]l
~E,l! D 2L

E

5
d̄

2pe K S ]En

]l
~l! D 2L

n

. ~19!

The final result will be independent ofe and the type of
smoothing, i.e., Lorentzian or Gaussian. Using thel deriva-
tive of Eq. ~11!, the dimensionless level velocities are

s̃E
25

2ped̄

\2 K (
p

(
p8

UBpBp8U]Sp

]l

]Sp8
]l

expH i FSp2Sp8
\ G J

3expH 2e

\
@Tp1Tp8#J L

E

. ~20!

The diagonal and off-diagonal contributions are se
rated, so

s̃E
25s̃E,diag

2 1s̃E,off
2 . ~21!

As \→0, the phase of the exponential oscillates rapidly a
averages out to be zero unlessSp5Sp8 . We will assume that
this occurs rarely except whenp5p8. The product
(]Sp /]l)(]Sp8 /]l) can take on both positive and negativ
values. This also helps to reduce the contributions of
off-diagonal terms. For a more complete discussion of
diagonal vs off-diagonal terms see Ref.@39#. We will only
present the results for the diagonal terms, since the corr
tions between the actions of different orbits is not known b
should not alter the leading\ dependence.

The diagonal contribution is

s̃E,diag
2 5

2ped̄g

\2 K (
p

uBpu2S ]Sp

]l D 2

expH 22eTp

\ J L
E

.

~22!

The factorg depends on the symmetries of the system. F
systems with time-reversal invarianceg52 and without
time-reversal symmetryg51. The precise values of]Sp /]l
are specific to each periodic orbit rendering the sum diffic
to evaluate precisely. A statistical approach is possi
though which generates a relationship between the sum
certain correlation decays. Hence, the quantity (]Sp /]l)2 in
Eq. ~22! is replaced by its average
8-6
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K S ]Sp

]l D 2L
p

5E
0

TE
0

TK ]H@p~ t !,q~ t !;l#

]l

]H@p~ t8!,q~ t8!;l#

]l L
p

dt8dt

52E
0

TE
t

TK ]H@p~ t !,q~ t !;l#

]l

]H@p~ t81t !,q~ t81t !;l#

]l L
p

dt8dt. ~23!
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Long orbits increasingly explore the available phase sp
on an ever finer scale. As the time between two points i
chaotic system goes to infinity, then they become unco
lated from each other. This is a consequence of the mix
property

^ f ~0! f ~ t !&p→0. ~24!

This property is independent of the placement of the t
points, i.e., the two points can lie on the same orbit as long
the time between the points increases to infinity. Thus, by
central limit theorem,]Sp /]l will be Gaussian distributed
for the sufficiently long periodic orbits. The time dependen
of Eq. ~23! is approximated by a method discussed by Bo
gaset al. @40#. They define

K~E!5E
0

` K ]H@p~0!,q~0!;l#

]l

]H@p~ t !,q~ t !;l#

]l L
p

dt

~25!

which can be evaluated in terms of properties of the per
bation. The variance of the actions in the limit of long pe
ods becomes

K S ]Sp

]l D 2L
p

'2K~E!T. ~26!

Applying the Hannay and Ozorio de Almeida sum rule@38#,
the following substitution is made:

(
p

uBpu2•••→ 1

2p2E
0

`dT

T
•••. ~27!

Hence, the diagonal contribution is

s̃E,diag
2 '

ed̄g

p\2E0

`1

T
@2K~E!T#expH 22eT

\ J dT

'
gK~E!d̄

p\
}\2(d11). ~28!

The variance of the level velocities on the scale of a m
spacing grows\21 faster than the density of states as t
semiclassical limit (\→0) is approached; see numeric
tests performed on the stadium in the next section.

The exact level velocities are perturbation dependent
cannot be determined without specific knowledge of the s
tem @i.e., the evaluation ofK(E)#. K(E) is a classical quan
tity that contains dynamical information about the period
orbits. It should scale as the reciprocal of the Lyapunov
ponent@41#. Leboeuf and Sieber derivedK(E) for billiards
01620
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where the perturbation is a moving boundary. In this ca
K(E) depends upon the autocorrelation function and
fluctuations of the number of bounces. Here, as well as
maps@42#, K(E) is an action velocity diffusion coefficient
$]Sp /]l% being Gaussian distributed is linked to the lev
velocities being Gaussian distributed as in RMT. If t
$]Sp /]l% are not Gaussian distributed by the Heisenb
time, then one should not expect the level velocities to
consistent with RMT; again see the stadium results ahea

B. Overlap intensities

Now we investigate the overlap intensities and derive
semiclassical expression for the\ scaling of the root mean
square. Eckhardtet al. @43# developed a semiclassical theo
based on periodic orbits to obtain the matrix elements o
sufficiently smooth operator. However, the projection ope
tor of interest hereua&^au is not smooth on the scale of\ for
Gaussian wave packets. Thus, their stationary phase app
mations do not apply, in principle, to the oscillating part
the strength function. In Berry’s work on scars@44#, he used
Gaussian smoothing of the Wigner transform of the eig
states to obtain a semiclassical expression for the streng
the scars. His approach led to a sum over periodic orbits.
will use the energy Green’s function similar to Tomsovic a
Heller in Ref. @21# where they derived the autocorrelatio
function using the time Green’s function and gave results
the strength functions as well. This technique results in
connection between the overlap intensities and the return
namics, namely the homoclinic orbits.

For completeness, we present the smooth part of
strength function which is easily obtained from the ze
length trajectories

S̄a~E,l!5
1

hdE A~q,p!d@E2H~q,p!#dqdp. ~29!

A(q,p) is the Wigner transform of the Gaussian wave pac
and is given by

A~q,p!52dexp$2~p2pa!2s2/\22~q2qa!2/s2%.
~30!

The above results were previously used by Heller@45# in the
derivation the envelope of the strength function and does
contain any information about the dynamics of the system

The oscillating part of the strength function, on the oth
hand, includes dynamical information,

Sa,osc~E,l!5
21

p
ImE ^auq&G~q,q8;E!^q8ua&dqdq8,

~31!
8-7
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where

G~q,q8;E!5
1

i\~2p i\!(d21)/2

3(
j

uDsu1/2ei [Sj (q,q8;E)/\2n j8p/2] ~32!

is the semiclassical energy Green’s function. The above
is over all paths that connectq to q8 on a given energy
surfaceE. The action is quadratically expanded about ea
reference trajectory; see Appendix A for details. The init
and final points (qi andqf) of the reference trajectories ar
obtained by considering the evolution of the wave pack
Nearby points will behave similarly for short times. Thu
the phase space can be partitioned into connecting area
the time is increased the number of partitions grow and
size of their area shrinks. The reference trajectories are
paths that connect the partitions. The autocorrelation fu
tion in Ref.@21# has the same form as Appendix A where t
paths that contribute to the saddle points are the orbits
moclinic to the centroid of the Gaussian wave packet so
qi and qf lie on the intersections of the stable and unsta
manifolds. The result from Appendix A is

Sa,osc~E!5
s

p1/2\
Re(

j
S detÃ21

detA D 1/2S 1

uq̇(N)uuq̇8(N)u
D 1/2

3 f j~qf ,qi !e
iSj (qf ,qi ;E)/\, ~33!

where

f j~qf ,qi !5expH 1

4
b•A21

•b2
i

\
pa•~qf2qi !2

~qf2qa!2

2s2

2
~qi2qa!2

2s2
2

in j8p

2 J . ~34!

The function f j (qf ,qi) in the above equation is a dampin
term which depends on the end points of the homocli
orbits. Only orbits which approach the center of the Gauss
wave packet in phase space will contribute to the sum.
time derivatives of the parallel coordinates are evaluate
the saddle points which are near the centroid of the Gauss
so we may setuq̇(N)u'uq̇8(N)u'upau/m. The sum over homo-
clinic orbits used for the autocorrelation function in Ref.@21#
converged well to the discrete quantum strength funct
when only those orbits whose period did not exceed
Heisenberg time@tH52p\d̄(E,l)# were included. As hap-
pened with the periodic orbits and the level velocities,
order to evaluate Eq.~33! the homoclinic orbits and thei
stabilities must be computed rendering the sum tediou
evaluate precisely as done in Ref.@21#.

By taking a statistical approach we can gain some ins
into the workings of this summation. The variance of t
intensities are obtained by a similar fashion as the level
locities. Using Eqs.~1! and ~18!, we have
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^Sa,osc
2 ~E,l!&E5

d̄

2pe
sa

2 . ~35!

Since the square of the strength function is a product of
delta functions, an energy smoothing term is required. A
making the diagonal approximation, we obtain

sa,diag
2

5
2peg

d̄
K (

j

m2s2

p\2 U detÃ21

detA Uu f j~qf ,qi !u2

upau2
e22eTj /\L

E

.

~36!

A classical sum rule is applied to the above sum for spe
cases including two-dimensional systems; see Appendi
for the details. Thus,

sa,diag
2 '

2egm2s2

\2d̄upau2
E exp$22eT/\%dT'

gm2s2

\d̄upau2
.

~37!

Setting s}\1/2 which shrinks the momentum and positio
uncertainties similarly, the\ scaling of sa,diag

2 is \d; see
numerical tests of the stadium in the next section.

Assuming that the amplitudes of the wavefunctions
Gaussian random, then the RMT result for strength functi
is a Porter-Thomas distribution which has a variance tha
proportional to the square of its average. The aver
strength function, Eq.~29!, scales as (s/\)d for Hamiltoni-
ans which can be locally expanded as a quadratic. There
with s}\1/2 the variance of the strength function, Eq.~37!,
scales as the square of the average and is consistent
RMT.

C. Weighted level velocities

A semiclassical treatment of the overlap correlation co
ficient defined in Eq.~2! is now developed. As stated in th
introduction, the companion paper@23# presents the semi
classical theory for maps. We stress that in the preced
subsections and in what follows is for conservative Ham
tonian systems. Here, the\ dependence of the average ove
lap correlation coefficient is established and a semiclass
argument for the existence of nonzero correlations is p
sented.

1. Actions of homoclinic orbits

To calculate the overlap correlation coefficient, the rate
change of the actions for homoclinic orbits will be necessa
As discussed earlier, this was accomplished for periodic
bits @37#. We extend these results to include the actions
homoclinic orbits. Homoclinic orbits have infinite period
causing their actions to become infinite. We are intereste
the limiting difference of the actionS j

(p) between thej th
homoclinic orbit and repetitions of its corresponding period
orbit p. The difference is finite and is equal to the ar
bounded by the stable and unstable manifolds with inters
tion at the j th homoclinic point in a Poincare´ map. S j

(p)
8-8
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provides information about the additional phase gathered
the homoclinic orbit. The action of thej th homoclinic orbit
asn→` in the time interval (2nTp ,nTp) is

Sn, j
(p)→2nSp1S j

(p) , ~38!

whereTp and Sp are the period and action of the period
orbit, respectively. As a consequence of the Birkhoff-Mo
theorem@46#, if the Poincare´ map is invertible and analytic
then there exist infinite families of periodic orbits that acc
mulate on a homoclinic orbit. It is thus possible to estim
the action of the homoclinic orbit by these periodic orb
whose action is given by@47#

an, j
(p)5nSp1S j

(p)2sn, j
(p) , ~39!

wheresn, j
(p) is the difference in action between a path defin

by S j
(p) along the stable and unstable manifolds and the p

of the new periodic orbit in a Poincare´ map. sn, j
(p) depends

exponentially onn, so asn→`, a2n, j
(p) approaches the actio

of the homoclinic orbit. Thus, in the limit of largen, S j
(p) is

approximated by the difference between two periodic orb
~i.e., S j

(p)'an, j
(p)2nSp). Hence, the change inS j

(p) due to a
small perturbation is calculated as in Ref.@37#,

DS j
(p)52DlE

an, j
(p)

]H~p,q;l!

]l
dt1nDlE

Sp

]H~p,q;l!

]l
dt

1O~l2!, ~40!

where the integrals are over the unperturbed periodic orb
The differences,sn, j

(p) , can be made smaller than the seco
order term in Eq.~40! by takingn large enough. Interchang
ing the order of integration and differentiation, the integr
reduce to the unperturbed energy times the derivative of
orbit period with respect to the parameter

DS j
(p)'2DlEp

]

]l
~Ta

n, j
(p)2nTp!. ~41!

The orbit periodT can be expressed as]S/]E. Thus, the
difference of the two periods asn→` is

Ta
n, j
(p)2nTp5

]an, j
(p)

]E
2n

]Sp

]E
'

]S j
(p)

]E
. ~42!

Hence,

DS j
(p)'2Dl

]

]lS Ep

]S j
(p)

]E D'2DlE
S j

(p)

]H~p,q;l!

]l
dt.

~43!

Note that the integral is over the unperturbed path along
stable and unstable manifolds. For zero correlations,DS j

(p)

must be ‘‘randomly’’ distributed about zero.
If enough time is allowed, then for ergodic systems the

of all homoclinic orbits for a given energy will come arb
trarily close to any point in phase space on that energy
face. Thus, an integral over phase space on the origina
ergy surface can be substituted for the time integral
01620
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lim
T→`

1

T
^DS j

(p)& j5
2Dl

V E d@E2H~p,q;0!#

3
]H~p,q;l!

]l
dpdq. ~44!

Since the density of states are kept constant, the pertu
tions fluctuate about zero and the integral vanishes. He
the average change in the actions will be zero. The m
square fluctuations of the actions

^~DS j
(p)!2& j

5~Dl!2E
0

tHE
0

tHK ]H~p,q;l!

]l

]H~p8,q8;l!

]l L
j

dtdt8

~45!

approaches a Gaussian distribution by the central limit th
rem via the same reasoning as that for periodic orbits. Ag
we can defineKhom(E) as in Eq.~25!, except now the aver-
age is over homoclinic orbits and instead of integrating
infinity we only integrate to the Heisenberg time to be co
sistent with the range of the sum in Eq.~33!. It is the short
time dynamics that dominate. Long time correlations w
average to zero by the mixing property@Eq. ~24!#. Thus, the
variance of the actions becomes

K S ]S j
(p)

]l D 2L
j

'2Khom~E!T. ~46!

Khom(E) will approachK(E) in the semiclassical limit (tH
→`).

2. Overlap intensity-level velocity correlation coefficient

In the previous two subsections, we have examined
pieces that constitute the overlap correlation coefficient. T
semiclassical theories of the level velocities and the inte
ties are now combined to construct a semiclassical theory
the weighted level velocities. The numerator of the over
correlation coefficient is proportional to the energy averag
product of the intensities and level velocities

K Sa~E,l!
]N~E,l!

]l L
E

5K (
n

(
m

pan~l!
]Em

]l

3de~E2En!de~E2Em!L
E

5
d̄

2pe K pan~l!
]En

]l L
n

5
d̄

2pe
C̃a~l!. ~47!

Lorentzian smoothing was again employed, Eq.~18!, and we
have definedC̃a(l) to be the numerator of the overlap co
relation coefficient~without the division of the rms leve
velocities and intensities!. By the definition of the overlap
correlation coefficient only the oscillating part of the lev
8-9
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velocities and the intensities are considered. Using the
rivative with respect to lambda of Eq.~11! and Eq.~33! the
numerator becomes

C̃a~l!5
2pe

d̄
K Re(

j
(

p

msBp

p\2 S detÃ21

detA D 1/2

3
f j~qf ,qi !

upau S ]Sp

]l Dei (Sj 2Sp)/\2e(Tj 1Tp)/\L
E

.

~48!

Because of the rapidly oscillating phases, the energy ave
ing will result in zero unlessSj'Sp . As stated earlier, for
every homoclinic orbit there is a periodic orbit that com
infinitesimally close to it. The same periodic orbit’s actio
can be nearly equal to the actions of different segment
the same homoclinic orbit. Thus, a diagonal approximatio
used for the homoclinic segments

C̃a~l!'
2peg

d̄
K Re(

j

msBj

p\2 S detÃ21

detA D 1/2

3e22eTj /\S ]Sj

]l D f j~qf ,qi !

upau L
E

. ~49!

Upon applying the sum rule for two-dimensional syste
and other special cases, Eq.~B8!, we have

C̃a~l!'
egms

pd̄upau

1

\2E
0

`

e22eT/\K S ]Sj

]l D f j~qf ,qi !L
j

dT.

~50!

The changes in action of the homoclinic excursions are n
weighted by thef j (qf ,qi)’s. Without the additional weight-
ing the average in the changes in the action would be zero
all positions of the Gaussian wave packet.

In Ref. @22#, a Heuristic argument for the direction of th
weighted level velocities was given. The argument basic
states that the energy surface changes with the param
such that the action changes are minimized. Equation~50!
differs from Ref. @22# in that the proper weightings
f j (qf ,qi), of the homoclinic orbits are derived here, and t
action changes are not correlated with the inverse peri
Also, in Ref. @22# the homoclinic orbits were strictly cutof
at the Heisenberg time whereas here there is an expone
decay on the order of the Heisenberg time with the ene
smoothing terme equal to\/tH @35#. One reason that@22#
reported such good results is that since the number of ho
clinic segments proliferate exponentially, most of the
cluded segments occurred near the Heisenberg time an
expression in Eq.~50! is divided by the Heisenberg tim
~i.e., multiplied bye).

As \→0 (tH→`), the integral in Eq.~50! would be
dominated by the subset of$]Sj /]l% associated with very
long orbits and would decouple from the weightings. F
small enough\, as previously stated, the]Sj /]l for these
orbits would approach a zero-centered Gaussian density,
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the integral would vanish. In other words, we could use
guments analogous to those underlying Eq.~16! to write

C̃a~l!'
2gms

pd̄upau
E

0

`

dT e22T/tH
T

tH

F

VE dpdq

3
]H~p,q;l!

]l
d@E2H~p,q;l!#, ~51!

whereF is the phase space average of the weightings. N
that the phase space average of]H(p,q;l)/]l vanishes ex-
cluding an irrelevant drift of levels, so the RMT prediction
C̃a(l) is recovered for\ small enough.

The leading order in\ correction to this is more difficult
to ascertain.\ enters into the exponential in the integral f
the energy smoothing, but not for the classical decay of
action changes. Upon taking the integral, this yields t
competing terms for the\ scaling which may depend upo
the region of phase space the correlation is taken in.
numerics also show a large fluctuation of the scaling in
stadium~see the next section!.

V. STADIUM BILLIARD

In this section the semiclassical theories just presen
and the numerical results from the stadium billiard are co
pared. The stadium billiard, which was proven by Bunimo
ich @48# to be classically chaotic, has become a paradigm
studies of quantum chaos. It is defined as a two-dimensio
infinite well with the shape pictured in Fig. 4. We contin
ously vary the side length 2l while altering the radii of the
endcapsR to keep the area of the stadium a consta
Throughout this section, the level velocities and intensit
are evaluated for a stadium withl5R51. For billiards the
average number of states below a given energyE is approxi-
mately N̄(E)'mAE/2p\2 where A is the area of the bil-
liard. This is the first term in an asymptotic series in powe
of \. The density of the states,dN̄/dE, is then a constant no
depending onl to the lowest power of\ if the area remains
the same.

We will examine three different energy regimes for t
stadium. Since billiards are scaling systems, this will cor
spond to three different values of\. The energy regimes ar
separated by a factor of 4 in energy or conversely a facto

FIG. 4. Birkhoff coordinates for the stadium billiard. The pos
tion coordinate can be taken to start anywhere along the perim
Here we have chosen the origin to be the middle of the right se
circle.
8-10
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1
2 in \. Twice as many states are taken in each succes
energy regime so that the averages will incorporate the s
relative size interval in energy as\ is decreased. This corre
sponds to the increase in the density of states for varying\.

The distributions of the level velocities for all three e
ergy regimes are shown in Fig. 5 along with the rand
matrix theory prediction. The skewness occurs because
class of marginally stable orbits in the stadium. These or
are the bouncing ball orbits which only strike the straig
edges. Their contribution do not seem to decrease as
semiclassical limit is approached though they should onc\
is sufficiently small. There is no clear trend for the lev
velocity distribution to approach Gaussian behavior. T
root mean square of the level velocities also deviates fr
our calculations of the\-scaling in Sec. IV~Fig. 6!. This is
again explained by the bouncing ball orbits whose effects
missing from the trace formula. Quantizing only these orb

FIG. 5. Distribution of the level velocities for a stadium billiard
The solid line is the lowest energy range, the dotted line is
middle energy range and the dash-dot line is the highest en
range. The RMT result is given by the dashed line. The level
locities have been rescaled to zero mean and unit variance.

FIG. 6. Root mean square of the level velocities as a function
1/\. The solid line is the theoretical value from Sec. IV and t
dashed line is the WKB results for the bouncing ball motion. T
best fit line through the stadium results is the dotted line.
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using WKB yields a dimensionless level velocity scaling
\22, while the trace formula gives a scaling of\23/2. The
numerical results give a scaling of approximately\21.8

which lies in between the two suggesting that the margina
stable orbits significantly effect the level velocities.

To study the intensities, the eigenstates must first be c
structed. Bogomolny’s transfer operator method@49# was
used to find the eigenstates. This method uses a (d21) di-
mensional surface of section. A convenient choice is
boundary of the stadium~Fig. 4!. The generation of a full
phase space picture of the stadium would otherwise req
four dimensions, two positions and two momenta. The po
tion coordinate is measured along the perimeter and the
mentum coordinate is defined by cosu. The classical dynam-
ics have a quantum analog that uses source points on
boundary. Thus, all of the eigenfunction’s localization b
havior can be explored using wave packets defined in th
coordinates. A coherent state on the boundary is a o
dimensional Gaussian wave packet; see the lower figur
Fig. 7. The corresponding wave packet in the interior of
stadium can be generated by a Green’s function and is sh
in the upper figure of Fig. 7. For billiards the Green’s fun
tion is proportional to a zeroth order Hankel function of t
first kind, H0

(1)(kr)/2i\2. The centroid of the Gaussian wav
packet is moved along the boundary and its momentum
changed according to the Birkhoff coordinate system. Th
the entire phase space of the stadium is explored.

The results for the average and the standard deviatio
the intensities using Birkhoff coordinates are shown in Fi
8 and 9, respectively. The average is flat except for pe
associated with the two symmetry lines of the stadium. T
eigenstates used here were even-even states, so there is
the intensity along the two symmetry lines that bisect the e
caps and the straight edges. The standard deviation has
large peaks centered around the bouncing ball orbits.
rest of the figure is relatively flat with a few small bump
Random matrix theory would predict this to be a flat figu
with small oscillations. The marginal stability of the boun
ing ball orbits can be seen but no other feature of the
dium, except for the horizontal bounce, is picked out

e
gy
-

f

FIG. 7. The lower figure is Gaussian wave packet on the bou
ary. The upper figure corresponds to the wave packet in the inte
of the stadium.
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looking at the intensities. Figure 10 shows the\ scaling of
the root mean square for the intensities where the w
packet is placed on various periodic orbits. The theory fr
Sec. IV predicts a smaller scaling than the numerical res
of the stadium.

The heights of the bouncing ball peaks can be appro
mated by quantizing the rectangular region of the stadiu
The intensities obtained from this calculation are weigh
by the ratio of the density of the bouncing ball states@50# to
the total density of states. The Gaussian wave packe
placed in the center of the straight edge and the middle
ergy regime is used. The results of this approximation
80.6 and 320.5 for the average intensity and rms intens
respectively, compared to 80.7 and 386.3 for the numer
calculations of the stadium.

Random matrix theory suggests that the correlation co
ficient for a generic chaotic system should result in zero.
the other hand, using the correlation coefficient for the s
dium in Birkhoff coordinates, we found that some of th
states gave nonzero correlations, Fig. 11. In fact, large
relations are found for nearly all the states in the stadi
billiard which means that there exists phase space loca
tion for most of the states. The large positive values of
correlation coefficient in the center of the figure again cor
spond to the bouncing ball states. Classically, this area
phase space is difficult to enter and leave. Hence, the lo
ization is expected to be stronger for this area of phase sp
The area beneath the peaks is several standard devia

FIG. 8. Average overlap intensity for a Gaussian wave pac
defined in the Birkhoff coordinates of the stadium.

FIG. 9. Root mean square of the overlap intensity for a Gaus
wave packet defined in the Birkhoff coordinates of the stadium
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@N21/25(114)21/2'0.09# away from zero as predicted b
random matrix theory. Thus, phase space localization is
occurring in this region. The point exactly in between t
peaks is the point in phase space associated with the h
zontal bounce. The series of smaller peaks leading up to
large peaks are the gateways into the vertical bouncing
area. Figure 12 is a plot of the orbits corresponding to th
peaks. They are periodic orbits which only strike the endc
twice and become almost vertical. Orbits must pass thro
these regions in order to enter or exit the vertical boun
states.

As the energy of the system is increased~i.e., \ is de-
creased!, the results of the correlation function remain qua
tatively the same, Fig. 13. All the peaks and valleys stay
the same place. The numerical results of the overlap co
lation coefficient fluctuate depending upon the area of ph
space being considered. This is consistent with the semic

t

n

FIG. 10. Root mean square of the overlap intensities as a fu
tion of 1/\. The wave packet was placed on the horizontal~solid
circles!, V ~solid squares!, diamond ~solid triangles!, rectangle
~open circles!, and bow tie~open squares! orbits. The solid line is
the theorectial value of\1 from Sec. IV and the dotted line is th
best fit of the stadium results which is\1.3. The intensities have
been rescaled at\51 so that they occupy the same area of the p

FIG. 11. Overlap correlation coefficient for the stadium usi
Birkhoff coordinates. The energy range of the averaging is 220
2600 where\5m51.
8-12
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sical theory in Sec. IV. More details of the system are
plored as\ is decreased, since the phase space is divi
into finer areas. Thus, more detailed information about
phase space localization of the system is observed in
overlap correlation coefficient at smaller values of\.

VI. CONCLUSIONS

We have shown that intensity weighted level velocit
are a good measure of the localization properties for cha
systems. They are far more sensitive to localization th
similarly weighted level curvatures~which are closely re-
lated to level statistics!. Thus, a system can be RMT-like, ye
the eigenstates are not behaving ergodically~as RMT pre-
dicts!.

The stadium eigenstates show a great deal of localizat
Not only are the vertical bouncing ball orbits predicted
the measure, but also other orbits. The overlap correla
coefficient is very parameter dependent. Choosing a diffe
parameter to vary would highlight other sets of orbits d
pending on how strong the perturbation effects those orb
The degree of localization can be predicted by the ret
dynamics. In a chaotic system, all the return dynamics can

FIG. 12. Trajectories corresponding to the peaks leading u
the bouncing ball orbits. The lower figure is a contour plot of F
13. The solid circles correspond to the bounce points of the tra
tories. Geometric and time-reversal symmetries were also inclu

FIG. 13. The same as Fig. 11 except for a higher energy ra
of 9200–10 000 where\5m51. Note the finer structure of the
various peaks.
01620
-
d
e
he

tic
n

n.

n
nt
-
s.
n
e

organized by the homoclinic orbits. The manner in which
chaotic system’s eigenstates approach ergodicity as\→0
will depend on a new time scale, i.e., that required for
homoclinic excursions to explore the available phase sp
fully.

Parametrically varied data exist that can be analyzed
this way. In the Coulomb-blockade conductance data to
extent that the resonance energy variations are related
single particle level velocity~minus a constant charging en
ergy and absent residual interaction effects! should show cor-
relations. We mention also that the microwave cavity d
can be studied with even more flexibility since they ha
measured the eigenstates and can therefore meticulo
study a wide range ofua& to get a complete picture of th
eigenstate localization properties.

Finally, this analysis could be applied in a very fruitfu
way to near-integrable and mixed phase space system
these cases, standard random matrix theory would not
the zeroth order statistical expectation, but the localizat
would still be determined by the return dynamics in t
semiclassical approximation.
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APPENDIX A: GAUSSIAN INTEGRATION

Inserting Eq.~32! into Eq. ~31!, the strength function in-
volves twoN-dimensional integrals whereN is the system’s
number of degrees of freedom,

Sa,osc~E!5
21

p
Im

1

i\~2p i\!(d21)/2S 1

ps2D d/2

3E (
j

uDsu1/2exp$2 ipa•~q2q8!/\

2~q2qa!2/2s22~q82qa!2/2s2

1 iSj~q,q8;E!/\2 in j8p/2%dqdq8. ~A1!

To evaluate the integrals overq and q8, the action is qua-
dratically expanded about the pointsqf andqi ,

Sj~q,q8;E!5Sj~qf ,qi ;E!1pf•~q2qf !2pi•~q82qi !

1
1

2 (
i ,k

N F S ]pf
( i )

]q(k)D
qf

~q( i )2qf
( i )!~q(k)2qf

(k)!

2S ]pi
( i )

]q8(k)
D

qi

~q8( i )2qi
( i )!~q8(k)2qi

(k)!

12S ]pf
( i )

]q8(k)
D

qi

~q( i )2qf
( i )!~q8(k)2qi

(k)!G .

~A2!

to
.
c-
d.

e
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It is useful to define the vector

z5~z1 , . . . ,zN ,z18 , . . . ,zN8 !, ~A3!

where

zi5~q( i )2qf
( i )!/s,

zi85~q8( i )2qi
( i )!/s. ~A4!

Thus, the integrals become

Sa,osc~E!5
21

p
Im

1

i\~2p i\!(d21)/2S 1

ps2D d/2

3E (
j

uDsu1/2s2dexp$2z•A•z2b•z1c%dz,

~A5!

whereA is composed of fourN-dimensional matrices

A5S A11 A12

A21 A22D ~A6!

and

b5~ idpf
(1)2dqf

(1) , . . . ,idpf
(N)2dqf

(N) ,idpi
(1)

2dqi
(1) , . . . ,idpi

(N)2dqi
(N)! ~A7!

with

dpf
( i )5~pa

( i )2pf
( i )!s/\,

dpi
( i )5~pa

( i )2pi
( i )!s/\,

dqf
( i )5~qa

( i )2qf
( i )!/s,

dqi
( i )5~qa

( i )2qi
( i )!/s, ~A8!

and

c5
i

\
Sj~qf ,qi ;E!2

i

\
pa•~qf2qi !2

~qf2qa!2

2s2

2
~qi2qa!2

2s2
2

in j8p

2
. ~A9!

The matrixA can be expressed in terms of the stability m
trix M , whereM has the same form as Eq.~A6!

S p

qD 5M S p8

q8
D . ~A10!

Thus,
01620
-

Aab
115

da,b

2
2

is2

2\ S ]pf
(a)

]q(b)D
qf

5
da,b

2
2

is2

2\

(
i

N

ma,i cof~Mb,i
21 !

detM21

5
I

2
2

is2

2\
M11~M21!21,

Aab
1252

is2

2\ S ]pf
(a)

]q8(b)
D

qi

5
is2

2\

cof~Mb,a
21 !

detM21
5

is2

2\
@~M21!21#T,

Aab
215

is2

2\ S ]pi
(a)

]q(b)D
qf

5
is2

2\

cof~Ma,b
21 !

detM21

5
is2

2\
~M21!21,

Aab
225

da,b

2
1

is2

2\ S ]pi
(a)

]q8(b)
D

qi

5
da,b

2
2

is2

2\

(
i

N

mi 1N,b1Ncof~M i ,a
21 !

detM21

5
I

2
2

is2

2\
~M21!21M22, ~A11!

wheremi ,k are elements of the stability matrix and cof(M ik
21)

is the signed minor ofM ik
21. Ds is a determinate involving

second derivatives of the actions

Ds5U ]2S

]q]q8

]2S

]q]E

]2S

]E]q8

]2S

]E2

U5
1

uq̇(N)uuq̇8(N)u
U2]2S

]q̃]q̃8
U

5
1

uq̇(N)uuq̇8(N)u
S 2\

is2D (d21)

uÃ21u. ~A12!

The tildes in the determinants in the above equation are u
to exclude theNth coordinate. To obtain the above resu
q(N) and q8(N) are chosen to be locally oriented along t
trajectory where the dots indicate time derivatives. SinceA
is a symmetric matrix, the result for a general Gaussian
tegral is used and, hence, the strength function becomes
Sa,osc~E!5
21

p
Im

1

i\~2p i\!(d21)/2S s2

p D d/2S 2\

is2D (d21)/2

(
j

S p2d

detAD 1/2S 1

uq̇(N)uuq̇8(N)u
D 1/2

uÃ21u1/2expH 1

4
b•A21

•b1cJ
5

s

p1/2\
Re(

j
S detÃ21

detA D 1/2S 1

uq̇(N)uuq̇8(N)u
D 1/2

expH 1

4
b•A21

•b1cJ , ~A13!
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where the time derivatives are evaluated at the saddle po

APPENDIX B: SUM RULE
FOR THE STRENGTH FUNCTION

The determinant of the (2N32N) matrix A

detA5detS I

2
2

is2

2\
M11~M21!21

is2

2\
@~M21!21#T

is2

2\
~M21!21

I

2
2

is2

2\
~M21!21M22

D
~B1!

can be reduced to determinants of (N3N) matrices by using
the relation @(M21)21#T52M121M11(M21)21M22 and
some row and column manipulations@51#, so that

detA5detH 2 is2

4\ FM111M22

1 i S \

s2 M212
s2

\
M12D G J Y det~M21!. ~B2!

The coordinates parallel to the trajectory do not mix with t
transverse coordinates, since a point on an orbit will rem
on that particular orbit. Thus, theNth rows and columns o
the individual matrices in the above expression are zero
cept for the (N,N) elements.

It is convenient to re-express the submatrices of the
bility matrix in terms of the Lyapunov exponents. Let$l i%
be the set of Lyapunov exponents whose real part is pos
ordered such thatl1l2.•••.lN21. The Lyapunov expo-
nents along the parallel coordinate are zero and we will o
work with the reduced@2(N21)32(N21)# stability matrix
in what follows. LetL be the diagonal matrix of the eigen
values of the reduced stability matrix

L5S el1t
••• 0 0 ••• 0

A A A A

0 ••• elN21t 0 ••• 0

0 ••• 0 e2l1t
••• 0

A A A A

0 ••• 0 0 ••• e2lN21t

D .

~B3!

Thus, by a similarity transform the reduced stability mat
can be written in terms of the Lyapunov exponents, i.e.,

M5LLL21. ~B4!

Hence, each of the elements of the stability matrix can
written as

mi j 5(
k

N

ai j
(k)elkt1bi j

(k)e2lkt, ~B5!
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whereai j
(k) andbi j

(k) are linear combinations of the elemen
of the L andL21 matrices. Because in general chaotic sy
temsl@0, thebi j

(k)’s may be omitted without seriously ef
fecting the above sum. All the determinants including t
numerator and denominator of detA as well as detÃ21, thus,
will involve products of Eq.~B5!. The homoclinic orbits in
the sum begin and end at the intersections of the stable
unstable manifolds near the Gaussian centroid. Since ne
manifolds may cross themselves, then in the vicinity of t
Gaussian centroid the branches of each manifold are ne
parallel to themselves. Thus, to an excellent approximat
the same similarity transformation will diagonalize the s
bility matrix for each individual orbit, regardless of the p
riod. Consequently, the elements ofL and L21 are period
independent.

Connections can be made between the determinants
the Kolmogorov-Sinai entropy. The Kolmogorov-Sinai e
tropy hKS of a system can be expressed using Pesin’s th
rem as the sum of the Lyapunov exponents with positive r
part

hKS5 (
i

N21

l i . ~B6!

If there is no mixing between the different coordinates, th
the individual matricesM11, M12, M21, andM22 are diago-
nal. Thus, each matrix element depends only upon one L
punov exponent and the determinants are proportiona
exp(2hKSt). This is the case for two-dimensional system
where the parallel and perpendicular coordinates in the
bility matrix separate as mentioned above. Hence, we ha

UdetÃ21

detA
U}exp~2hKSt !. ~B7!

Unlike the periodic orbits, the homoclinic sum is ov
segments of the orbits. The number of homoclinic points w
proliferate exponentially at the same rate as the fixed po
in the neighborhood which is proportional to exp(hTT) where
hT is the topological entropy. This is demonstrated by exa
ining the partitioning of the phase space mentioned in S
IV B which has exponential growth. The partitioning reflec
the symbolic dynamics of the system. The symbolic co
uniquely describes each orbit so that amount of code~parti-
tions! cannot grow faster than the number of periodic poin
since each code~partition! cannot represent more than on
periodic point.

Finally, the sum rule is obtained by setting the topologic
entropy and Kolmogorov-Sinai entropy equal to each oth
Then, for the special case of no mixing in the stability mat
as mentioned above the combination of the amplitudes
the number of orbits yields

(
j
UdetÃ21

detA
U•••→E dT•••. ~B8!
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